Phononics in low-dimensional materials

Phonons – quanta of crystal lattice vibrations – reveal themselves in all electrical, thermal, and optical phenomena in materials. Nanostructures open exciting opportunities for tuning the phonon energy spectrum and related material properties for specific applications. The possibilities for controlled modification of the phonon interactions and transport – referred to as phonon engineering or phononics – increased even further with the advent of graphene and two-dimensional van der Waals materials. We describe methods for tuning the phonon spectrum and engineering the thermal properties of the low-dimensional materials via ribbon edges, grain boundaries, isotope composition, defect concentration, and atomic-plane orientation.

[1]  R. Neveling,et al.  J. Phys. Conf. Series , 2012 .

[2]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[3]  Louis E Brus,et al.  Imaging stacking order in few-layer graphene. , 2011, Nano letters.

[4]  D. Poulikakos,et al.  Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. , 2011, Nano letters.

[5]  M. Stroscio,et al.  Electron interaction with confined acoustic phonons in quantum wires subjected to a magnetic field , 1998 .

[6]  J. Murthy,et al.  Simulation of phonon transmission through graphene and graphene nanoribbons with a Green’s function method , 2010 .

[7]  Natalio Mingo,et al.  Flexural phonons and thermal transport in graphene , 2010 .

[8]  A. Balandin,et al.  Giant enhancement of the carrier mobility in silicon nanowires with diamond coating. , 2006, Nano letters.

[9]  J. Xiang,et al.  Thermal conductivity of ge and ge-si core-shell nanowires in the phonon confinement regime. , 2011, Nano letters.

[10]  B. Ai,et al.  Chirality- and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study , 2011, 1111.5611.

[11]  Hiroyuki Sakaki,et al.  Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures , 1980 .

[12]  Acoustic phonon engineering of thermal properties of silicon- based nanostructures , 2007 .

[13]  Junyong Kang,et al.  Thermal conductivity of isotopically modified graphene. , 2011, Nature Materials.

[14]  R. Nair,et al.  Thermal conductivity of graphene in corbino membrane geometry. , 2010, ACS nano.

[15]  Carl W. Magnuson,et al.  Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. , 2011, ACS nano.

[16]  Jie Shan,et al.  Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons. , 2011, Physical review letters.

[17]  Jian-Sheng Wang,et al.  Thermal conductance of graphene and dimerite , 2009, 0902.1836.

[18]  Bambi Hu,et al.  Suppression of thermal conductivity in graphene nanoribbons with rough edges , 2010, 1006.4879.

[19]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[20]  Paul G. Klemens,et al.  Theory of Thermal Conduction in Thin Ceramic Films , 2001 .

[21]  A. Balandin,et al.  Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers , 2005 .

[22]  A. Balandin,et al.  Two-dimensional phonon transport in graphene , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Alexander A. Balandin,et al.  Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .

[24]  C. N. Lau,et al.  Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices , 2007 .

[25]  Xingao Gong,et al.  Thermal conductivity of graphene nanoribbons , 2009 .

[26]  Natalio Mingo,et al.  Flexural phonons and thermal transport in multilayer graphene and graphite , 2011 .

[27]  J. Meindl,et al.  Breakdown current density of graphene nanoribbons , 2009, 0906.4156.

[28]  A. Balandin,et al.  Thermal Conduction in Suspended Graphene Layers , 2010 .

[29]  A. Balandin Nanophononics: phonon engineering in nanostructures and nanodevices. , 2005, Journal of nanoscience and nanotechnology.

[30]  A. Balandin,et al.  Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices , 2003 .

[31]  Guanxiong Liu,et al.  Ultraviolet Raman microscopy of single and multilayer graphene , 2009, 0903.1922.

[32]  J. Tersoff,et al.  Valence force model for phonons in graphene and carbon nanotubes , 2009, 0905.3718.

[33]  A. Balandin,et al.  Acoustic phonon engineering in coated cylindrical nanowires , 2005 .

[34]  Alexander A. Balandin,et al.  Theoretical description of thermal transport in graphene: The issues of phonon cut‐off frequencies and polarization branches , 2011 .

[35]  Ning Wei,et al.  Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility , 2011, Nanotechnology.

[36]  B. Yakobson,et al.  Ballistic thermal conductance of graphene ribbons. , 2010, Nano letters.

[37]  Daining Fang,et al.  Mechanical and thermal transport properties of graphene with defects , 2011 .

[38]  P. G. Klemens,et al.  Theory of the A-Plane Thermal Conductivity of Graphite , 2000 .

[39]  M. Stroscio,et al.  Quantized long-wavelength optical phonon modes in graphene nanoribbon in the elastic continuum model , 2009 .

[40]  Baowen Li,et al.  Thermal logic gates: computation with phonons. , 2007, Physical review letters.

[41]  A. Balandin,et al.  Phonon Engineering in Hetero- and Nanostructures , 2007 .

[42]  G. Casati Device physics: the heat is on--and off. , 2007, Nature nanotechnology.

[43]  Alexander A. Balandin,et al.  Heat conduction in graphene: experimental study and theoretical interpretation , 2009 .

[44]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[45]  Geunsik Lee,et al.  Thermal transport in graphene and effects of vacancy defects , 2011 .

[46]  Guanxiong Liu,et al.  Graphene quilts for thermal management of high-power GaN transistors. , 2012, Nature communications.

[47]  Jie Shan,et al.  Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. , 2010, Physical review letters.

[48]  Mitra Dutta,et al.  Phonons in Nanostructures , 2001 .

[49]  A. Balandin,et al.  Electron mobility enhancement in AlN/GaN/AlN heterostructures with InGaN nanogrooves , 2006 .

[50]  Vladimir Mitin,et al.  Confined acoustic phonons in a free‐standing quantum well and their interaction with electrons , 1994 .

[51]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[52]  C. N. Lau,et al.  Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. , 2010, Nano letters.

[53]  Alexander A. Balandin,et al.  Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures , 2003 .

[54]  T. Michel,et al.  Raman spectra of misoriented bilayer graphene , 2008, 0805.0511.

[55]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[56]  Pawel Keblinski,et al.  Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination , 2010 .

[57]  Pohl,et al.  Phonon scattering at silicon crystal surfaces. , 1987, Physical review. B, Condensed matter.

[58]  A. Balandin,et al.  Size-quantized oscillations of the electron mobility limited by the optical and confined acoustic phonons in the nanoscale heterostructures , 2007 .

[59]  L. Wirtz,et al.  The phonon dispersion of graphite revisited , 2004, cond-mat/0404637.

[60]  Jian-Sheng Wang,et al.  First principle study of the thermal conductance in graphene nanoribbon with vacancy and substitutional silicon defects , 2011, 1108.5811.

[61]  R. Ruoff,et al.  Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. , 2010, Nano letters.

[62]  Alexander A. Balandin,et al.  Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice , 2002 .

[63]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[64]  M. Krisch,et al.  Phonon dispersion of graphite by inelastic x-ray scattering , 2007, 0705.2418.

[65]  D. A. Broido,et al.  Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene , 2010 .

[66]  Nuo Yang,et al.  Thermal rectification in asymmetric graphene ribbons , 2009, 0906.1046.

[67]  Luigi Colombo,et al.  Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. , 2011, Journal of the American Chemical Society.

[68]  Mehdi Asheghi,et al.  Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers , 2006 .

[69]  M. Wybourne,et al.  Acoustic phonon modes of rectangular quantum wires , 1997 .

[70]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[71]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[72]  Gang Zhang,et al.  Thermal conduction and rectification in few-layer graphene Y junctions. , 2011, Nanoscale.

[73]  Mechanism of thermal conductivity reduction in few-layer graphene , 2011, 1104.4964.

[74]  Heat conduction in a three dimensional anharmonic crystal. , 2009, Physical review letters.

[75]  G. Jin,et al.  Stretching-enhanced ballistic thermal conductance in graphene nanoribbons , 2011 .

[76]  A. A. Balandin,et al.  Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite , 2009, 0904.0607.

[77]  Alexander A. Balandin,et al.  A phonon depletion effect in ultrathin heterostructures with acoustically mismatched layers , 2004 .

[78]  Jia-An Yan,et al.  Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory , 2008, 0901.3093.

[79]  J. Maultzsch,et al.  Phonon Dispersion in Graphite , 2004 .

[80]  A. Rajabpour,et al.  Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study , 2011 .

[81]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[82]  Excitons in wurtzite AlGaN/GaN quantum-well heterostructures , 2008, 0805.4602.

[83]  Yunfei Chen,et al.  In-plane lattice thermal conductivities of multilayer graphene films , 2011 .

[84]  C. Achete,et al.  Raman signature of graphene superlattices. , 2011, Nano letters.

[85]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[86]  Yujie J. Ding,et al.  Engineering of the nonradiative transition rates in modulation-doped multiple-quantum wells , 1996 .

[87]  N. Mingo,et al.  Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit , 2010 .

[88]  Y. P. Chen,et al.  Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge , 2009 .

[89]  A. Balandin,et al.  Phonon-engineered mobility enhancement in the acoustically mismatched silicon/diamond transistor channels , 2008 .

[90]  S. Pei,et al.  Thermal Transport in Graphene Nanostructures: Experiments and Simulations , 2010 .

[91]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[92]  Xiaolin Wei,et al.  Ballistic thermal rectification in asymmetric three-terminal graphene nanojunctions , 2010 .

[93]  H. Sevinçli,et al.  Control of thermal and electronic transport in defect-engineered graphene nanoribbons. , 2011, ACS nano.

[94]  Jiuning Hu,et al.  Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. , 2009, Nano letters.

[95]  Alexander A. Balandin,et al.  Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering , 2011 .

[96]  A. Reina,et al.  Single-layer behavior and its breakdown in twisted graphene layers. , 2010, Physical review letters.

[97]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[98]  Luigi Colombo,et al.  Evolution of graphene growth on Ni and Cu by carbon isotope labeling. , 2009, Nano letters.

[99]  Acoustic phonons and spin relaxation in graphene nanoribbons , 2011, 1104.3520.

[100]  Klein,et al.  Folded acoustic and quantized optic phonons in (GaAl)As superlattices. , 1985, Physical review. B, Condensed matter.

[101]  Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier , 2002, cond-mat/0201125.

[102]  Alexander A. Balandin,et al.  Effect of phonon confinement on the thermoelectric figure of merit of quantum wells , 1998 .

[103]  A. Balandin,et al.  Built-in field effect on the electron mobility in AlN∕GaN∕AlN quantum wells , 2006 .

[104]  V. Fomin,et al.  Polaronic Hamiltonian and Polar Optical Vibrations in Multilayer Structures , 1995 .

[105]  D. Teweldebrhan,et al.  Modification of graphene properties due to electron-beam irradiation , 2008, 0812.0571.

[106]  Irena Knezevic,et al.  Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering , 2011 .

[107]  John Ziman,et al.  Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .