Variable-length compression allowing errors (extended)

This paper studies the fundamental limits of the minimum average length of lossless and lossy variable-length compression, allowing a nonzero error probability $\epsilon$, for lossless compression. We give non-asymptotic bounds on the minimum average length in terms of Erokhin's rate-distortion function and we use those bounds to obtain a Gaussian approximation on the speed of approach to the limit which is quite accurate for all but small blocklengths: $$(1 - \epsilon) k H(\mathsf S) - \sqrt{\frac{k V(\mathsf S)}{2 \pi} } e^{- \frac { \left(Q^{-1}(\epsilon)\right)^2} 2 }$$ where $Q^{-1}(\cdot)$ is the functional inverse of the $Q$-function and $V(\mathsf S)$ is the source dispersion. A nonzero error probability thus not only reduces the asymptotically achievable rate by a factor of $1 - \epsilon$, but this asymptotic limit is approached from below, i.e. a larger source dispersion and shorter blocklengths are beneficial. Variable-length lossy compression under excess distortion constraint is shown to exhibit similar properties.

[1]  Thomas M. Cover,et al.  Some equivalences between Shannon entropy and Kolmogorov complexity , 1978, IEEE Trans. Inf. Theory.

[2]  Wojciech Szpankowski,et al.  Minimum Expected Length of Fixed-to-Variable Lossless Compression Without Prefix Constraints , 2011, IEEE Transactions on Information Theory.

[3]  Zhen Zhang,et al.  The redundancy of source coding with a fidelity criterion: 1. Known statistics , 1997, IEEE Trans. Inf. Theory.

[4]  John C. Kieffer Strong converses in source coding relative to a fidelity criterion , 1991, IEEE Trans. Inf. Theory.

[5]  Wojciech Szpankowski One-to-one code and its anti-redundancy , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[6]  Ioannis Kontoyiannis,et al.  Pointwise redundancy in lossy data compression and universal lossy data compression , 2000, IEEE Trans. Inf. Theory.

[7]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[8]  E. Posner,et al.  Epsilon Entropy and Data Compression , 1971 .

[9]  V. Statulevičius,et al.  Limit Theorems of Probability Theory , 2000 .

[10]  Amir Dembo,et al.  Critical behavior in lossy source coding , 2000, IEEE Trans. Inf. Theory.

[11]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[12]  Hirosuke Yamamoto,et al.  Asymptotic properties on codeword lengths of an optimal FV code for general sources , 2005, IEEE Transactions on Information Theory.

[13]  Wojciech Szpankowski,et al.  A One-to-One Code and Its Anti-Redundancy , 2008, IEEE Transactions on Information Theory.

[14]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[15]  En-Hui Yang,et al.  The redundancy of source coding with a fidelity criterion - Part II: Coding at a fixed rate level with unknown statistics , 2001, IEEE Trans. Inf. Theory.

[16]  A. Orlitsky,et al.  A lower bound on the expected length of one-to-one codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[17]  Sergio Verdú,et al.  Fixed-Length Lossy Compression in the Finite Blocklength Regime , 2011, IEEE Transactions on Information Theory.

[18]  Alexandr A. Borovkov,et al.  Limit Theorems of Probability Theory. , 2011 .

[19]  Hiroki Koga,et al.  Source Coding Using Families of Universal Hash Functions , 2007, IEEE Transactions on Information Theory.

[20]  Te Sun Han,et al.  Weak variable-length source coding , 2000, IEEE Trans. Inf. Theory.

[21]  Zhen Zhang,et al.  On the Redundancy of Lossy Source Coding with Abstract Alphabets , 1999, IEEE Trans. Inf. Theory.

[22]  V. Erokhin $\varepsilon $-Entropy of a Discrete Random Variable , 1958 .

[23]  E. Posner,et al.  Epsilon entropy of stochastic processes. , 1967 .

[24]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[25]  Akisato Kimura,et al.  Weak variable-length Slepian-Wolf coding with linked encoders for mixed sources , 2001, Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494).

[26]  H. Vincent Poor,et al.  Feedback in the Non-Asymptotic Regime , 2011, IEEE Transactions on Information Theory.

[27]  Sergio Verdú,et al.  Optimal Lossless Data Compression: Non-Asymptotics and Asymptotics , 2014, IEEE Transactions on Information Theory.

[28]  Aaron D. Wyner,et al.  An Upper Bound on the Entropy Series , 1972, Inf. Control..