Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow.

Mechanical stress produces flow of fluid in the osteocytic lacunar-canalicular network, which is likely the physiological signal for the adaptive response of bone. We compared the induction of prostaglandin G/H synthase-2 (PGHS-2) by pulsating fluid flow (PFF) and serum in osteocytes, osteoblasts, and periosteal fibroblasts, isolated from 18-day-old fetal chicken calvariae. A serum-deprived mixed population of primarily osteocytes and osteoblasts responded to serum with a two- to threefold induction of PGHS-2 mRNA. Serum stimulated PGHS-2-derived PGE(2) release from osteoblasts and osteocytes but not from periosteal fibroblasts as NS-398, a PGHS-2 blocker, inhibited PGE(2) release from osteocytes and osteoblasts with 65%, but not that from periosteal fibroblasts. On the other hand PFF (0.7 Pa, 5 Hz) stimulated (3 fold) PGHS-2 mRNA only in OCY. The related PGE(2) response could be completely inhibited by NS-398. We conclude that osteocytes have a higher intrinsic sensitivity for loading-derived fluid flow than osteoblasts or periosteal fibroblasts.

[1]  E H Burger,et al.  Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes--a cytoskeleton-dependent process. , 1996, Biochemical and biophysical research communications.

[2]  J. M. Goodson,et al.  Stimulation of bone resorption by various prostaglandins in organ culture , 1975 .

[3]  E H Burger,et al.  Pulsating Fluid Flow Stimulates Prostaglandin Release and Inducible Prostaglandin G/H Synthase mRNA Expression in Primary Mouse Bone Cells , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[4]  H. Kawaguchi,et al.  Differential regulation of inducible and constitutive prostaglandin endoperoxide synthase in osteoblastic MC3T3-E1 cells. , 1993, The Journal of biological chemistry.

[5]  P. Nijweide,et al.  Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts--correlation with prostaglandin upregulation. , 1995, Biochemical and biophysical research communications.

[6]  G. Rodan,et al.  Indomethacin inhibition of tenotomy‐induced bone resorption in rats , 1988, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[7]  B. Varnum,et al.  TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. , 1991, The Journal of biological chemistry.

[8]  B Krølner,et al.  Vertebral bone loss: an unheeded side effect of therapeutic bed rest. , 1983, Clinical science.

[9]  W. Xie,et al.  Prostaglandin G/H synthase isoenzyme 2 expression in fibroblasts: regulation by dexamethasone, mitogens, and oncogenes. , 1993, Archives of biochemistry and biophysics.

[10]  J. Gierse,et al.  Expression and selective inhibition of the constitutive and inducible forms of human cyclo-oxygenase. , 1995, The Biochemical journal.

[11]  A. van der Plas,et al.  Sensitivity of osteocytes to biomechanical stress in vitro , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  L. Lanyon,et al.  Early strain‐related changes in enzyme activity in osteocytes following bone loading in vivo , 1989, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[13]  L. Raisz,et al.  Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: interaction with cortisol. , 1990, Endocrinology.

[14]  M. Forwood,et al.  Inducible cyclo‐oxygenase (COX‐2) mediates the induction of bone formation by mechanical loading in vivo , 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[15]  L E Lanyon,et al.  Loading‐related increases in prostaglandin production in cores of adult canine cancellous bone in vitro: A role for prostacyclin in adaptive bone remodeling? , 1991, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[16]  D. Dewitt Prostaglandin endoperoxide synthase: regulation of enzyme expression. , 1991, Biochimica et biophysica acta.

[17]  M. Horton,et al.  Adhesive properties of isolated chick osteocytes in vitro. , 1996, Bone.

[18]  W. Jee,et al.  Long-term anabolic effects of prostaglandin-E2 on tibial diaphyseal bone in male rats. , 1991, Bone and mineral.

[19]  Y. Mikuni‐Takagaki,et al.  Mechanotransduction in stretched osteocytes--temporal expression of immediate early and other genes. , 1998, Biochemical and biophysical research communications.

[20]  N. A. Callejas,et al.  Inhibition of prostaglandin synthesis up-regulates cyclooxygenase-2 induced by lipopolysaccharide and peroxisomal proliferators. , 1999, The Journal of pharmacology and experimental therapeutics.

[21]  William L. Smith,et al.  Prostaglandin Endoperoxide H Synthases (Cyclooxygenases)-1 and −2* , 1996, The Journal of Biological Chemistry.

[22]  S. Higuchi,et al.  NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. , 1994, Prostaglandins.

[23]  R. Schwartz,et al.  Cloning and sequencing of a deoxyribonucleic acid copy of glyceraldehyde-3-phosphate dehydrogenase messenger ribonucleic acid isolated from chicken muscle. , 1983, Biochemistry.

[24]  A. van der Plas,et al.  Characteristics and properties of osteocytes in culture , 1994, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[25]  V. Schneider,et al.  Long-term follow-up of Skylab bone demineralization. , 1980, Aviation, space, and environmental medicine.

[26]  L V McIntire,et al.  Flow effects on prostacyclin production by cultured human endothelial cells. , 1985, Science.

[27]  Y. Ma,et al.  The in vivo anabolic actions of prostaglandins in bone. , 1997, Bone.

[28]  J. Oates,et al.  Effect of prostaglandin endoperoxides and metabolites on bone resorption in vitro , 1977, Nature.

[29]  L E Lanyon,et al.  Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading , 1988, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[30]  M. Simon,et al.  Measurement by quantitative PCR of changes in HPRT, PGK-1, PGK-2, APRT, MTase, and Zfy gene transcripts during mouse spermatogenesis. , 1990, Nucleic acids research.

[31]  A. van der Plas,et al.  Isolation and purification of osteocytes , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[32]  S. Cowin,et al.  A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. , 1994, Journal of biomechanics.

[33]  T. Chambers,et al.  Effect of arachidonic acid metabolites on bone resorption by isolated rat osteoclasts , 1989, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[34]  V. Winn,et al.  A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. , 1991, The Journal of biological chemistry.