On the generic and typical ranks of 3-tensors

We study the generic and typical ranks of 3-tensors of dimension l x m x n using results from matrices and algebraic geometry. We state a conjecture about the exact values of the generic rank of 3-tensors over the complex numbers, which is verified numerically for l,m,n not greater than 14. We also discuss the typical ranks over the real numbers, and give an example of an infinite family of 3-tensors of the form l=m, n=(m-1)^2+1, m=3,4,..., which have at least two typical ranks.

[1]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[2]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[3]  Joe Harris,et al.  On symmetric and skew-symmetric determinantal varieties , 1984 .

[4]  Thomas Lickteig Typical tensorial rank , 1985 .

[5]  A. Stegeman Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher , 2006 .

[6]  Editors , 1986, Brain Research Bulletin.

[7]  A. Stegeman,et al.  Symmetry transformations for square sliced three-way arrays, with applications to their typical rank , 2006 .

[8]  S. Friedland 3-Tensors: ranks and approximations , 2006 .

[9]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[10]  Alessandro Terracini,et al.  Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari , 1915 .

[11]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[12]  J. Berge,et al.  The typical rank of tall three-way arrays , 2000 .

[13]  C. Bernard,et al.  2-adic valuations of certain ratios of products of factorials and applications , 2005 .

[14]  Shmuel Friedland,et al.  Subspaces of symmetric matrices containing matrices with a multiple first eigenvalue. , 1976 .

[15]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[16]  J. Berge,et al.  Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays , 1991 .

[17]  J. Berge,et al.  Simplicity of core arrays in three-way principal component analysis and the typical rank of p×q×2 arrays , 1999 .

[18]  A. Geramita,et al.  Ranks of tensors, secant varieties of Segre varieties and fat points , 2002 .

[19]  J. Kruskal Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .

[20]  F. R. Gantmakher The Theory of Matrices , 1984 .

[21]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[22]  J. Berge,et al.  Partial uniqueness in CANDECOMP/PARAFAC , 2004 .

[23]  Chris Peterson,et al.  Induction for secant varieties of Segre varieties , 2006, math/0607191.

[24]  R. Cattell “Parallel proportional profiles” and other principles for determining the choice of factors by rotation , 1944 .

[25]  P. Comon,et al.  Generic and typical ranks of multi-way arrays , 2009 .

[26]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[27]  Francesco Romani Complexity measures for matrix multiplication algorithms , 1980 .

[28]  Michael Clausen,et al.  Algebraic Complexity Theory : With the Collaboration of Thomas Lickteig , 1997 .

[29]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[30]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[31]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[32]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[33]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[34]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[35]  I. Shafarevich Basic algebraic geometry , 1974 .

[36]  V. Strassen Rank and optimal computation of generic tensors , 1983 .