On the generic and typical ranks of 3-tensors
暂无分享,去创建一个
[1] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[2] Joos Vandewalle,et al. Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..
[3] Joe Harris,et al. On symmetric and skew-symmetric determinantal varieties , 1984 .
[4] Thomas Lickteig. Typical tensorial rank , 1985 .
[5] A. Stegeman. Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher , 2006 .
[6] Editors , 1986, Brain Research Bulletin.
[7] A. Stegeman,et al. Symmetry transformations for square sliced three-way arrays, with applications to their typical rank , 2006 .
[8] S. Friedland. 3-Tensors: ranks and approximations , 2006 .
[9] Peter Lancaster,et al. The theory of matrices , 1969 .
[10] Alessandro Terracini,et al. Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari , 1915 .
[11] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[12] J. Berge,et al. The typical rank of tall three-way arrays , 2000 .
[13] C. Bernard,et al. 2-adic valuations of certain ratios of products of factorials and applications , 2005 .
[14] Shmuel Friedland,et al. Subspaces of symmetric matrices containing matrices with a multiple first eigenvalue. , 1976 .
[15] Grazia Lotti,et al. O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..
[16] J. Berge,et al. Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays , 1991 .
[17] J. Berge,et al. Simplicity of core arrays in three-way principal component analysis and the typical rank of p×q×2 arrays , 1999 .
[18] A. Geramita,et al. Ranks of tensors, secant varieties of Segre varieties and fat points , 2002 .
[19] J. Kruskal. Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .
[20] F. R. Gantmakher. The Theory of Matrices , 1984 .
[21] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[22] J. Berge,et al. Partial uniqueness in CANDECOMP/PARAFAC , 2004 .
[23] Chris Peterson,et al. Induction for secant varieties of Segre varieties , 2006, math/0607191.
[24] R. Cattell. “Parallel proportional profiles” and other principles for determining the choice of factors by rotation , 1944 .
[25] P. Comon,et al. Generic and typical ranks of multi-way arrays , 2009 .
[26] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[27] Francesco Romani. Complexity measures for matrix multiplication algorithms , 1980 .
[28] Michael Clausen,et al. Algebraic Complexity Theory : With the Collaboration of Thomas Lickteig , 1997 .
[29] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[30] J. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .
[31] Joe W. Harris,et al. Algebraic Geometry: A First Course , 1995 .
[32] D. Mumford. Algebraic Geometry I: Complex Projective Varieties , 1981 .
[33] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[34] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[35] I. Shafarevich. Basic algebraic geometry , 1974 .
[36] V. Strassen. Rank and optimal computation of generic tensors , 1983 .