Impact of ionomer in the catalyst layers on proton exchange membrane fuel cell performance under different reactant flows and pressures

[1]  Xianguo Li,et al.  The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability , 2018 .

[2]  Xianguo Li,et al.  Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells , 2018 .

[3]  Krishna Vijayaraghavan,et al.  Optimization of catalyst distribution along PEMFC channel through a numerical two-phase model and genetic algorithm , 2017 .

[4]  Xianguo Li,et al.  Investigation of catalytic vs reactant transport effect of catalyst layers on proton exchange membrane fuel cell performance , 2017 .

[5]  Hee-Young Park,et al.  Effect of Catalyst Layer Ionomer Content on Performance of Intermediate Temperature Proton Exchange Membrane Fuel Cells (IT-PEMFCs) under Reduced Humidity Conditions , 2017 .

[6]  S. Holdcroft,et al.  Water transport through short side chain perfluorosulfonic acid ionomer membranes , 2016 .

[7]  Ken-Ming Yin,et al.  Non-uniform agglomerate cathode catalyst layer model on the performance of PEMFC with consideration of water effect , 2016 .

[8]  Bora Timurkutluk,et al.  Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells , 2016 .

[9]  Youngchul Park,et al.  Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells , 2016 .

[10]  M. Mayer,et al.  Analysis of mechanism of Nafion® conductivity change due to hot pressing treatment , 2016 .

[11]  Dominic F Gervasio,et al.  Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost , 2015 .

[12]  J. Hamelin,et al.  Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review , 2015 .

[13]  J. Hamelin,et al.  The effect of low platinum loading on the efficiency of PEMFC’s electrocatalysts supported on TiO2–Nb, and SnO2–Nb: An experimental comparison between active and stable conditions , 2015 .

[14]  Youngchul Park,et al.  Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes , 2015 .

[15]  G. Pan,et al.  A modified decal method for preparing the membrane electrode assembly of proton exchange membrane fuel cells , 2015 .

[16]  Steven Holdcroft,et al.  Fuel Cell Catalyst Layers: A Polymer Science Perspective , 2014 .

[17]  Nethika S. Suraweera,et al.  Structure of the Ionomer Film in Catalyst Layers of Proton Exchange Membrane Fuel Cells , 2013 .

[18]  N. Economou,et al.  Morphological differences in short side chain and long side chain perfluorosulfonic acid proton exchange membranes at low and high water contents , 2013 .

[19]  E. Bekyarova,et al.  Functionalized Single-Walled Carbon Nanotube-Based Fuel Cell Benchmarked Against US DOE 2017 Technical Targets , 2013, Scientific Reports.

[20]  Lei Zhang,et al.  Understanding the effects of backpressure on PEM fuel cell reactions and performance , 2013 .

[21]  Supaporn Therdthianwong,et al.  Cathode catalyst layer design for proton exchange membrane fuel cells , 2012 .

[22]  Antonino S. Aricò,et al.  Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature , 2011 .

[23]  Andrew W. Fraser,et al.  Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: Conductivity of adsorbed Nafion films , 2011 .

[24]  D. Bessarabov,et al.  Low equivalent weight short-side-chain perfluorosulfonic acid ionomers in fuel cell cathode catalyst , 2011 .

[25]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[26]  L. Merlo,et al.  AQUIVION - The Short-Side-Chain PFSA for Next Generation PEFCs Presents D79-20BS as New Stabilized Low-EW Dispersion grade , 2011 .

[27]  S. Holdcroft,et al.  Fuel cell catalyst layers containing short-side-chain perfluorosulfonic acid ionomers , 2011 .

[28]  M. Hunsom,et al.  Effect of MEA fabrication techniques on the cell performance of Pt–Pd/C electrocatalyst for oxygen reduction in PEM fuel cell , 2010 .

[29]  Deborah J. Jones,et al.  High Temperature Operation of a Solid Polymer Electrolyte Fuel Cell Stack Based on a New Ionomer Membrane , 2009, ECS Transactions.

[30]  Mathias Schulze,et al.  A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells , 2009 .

[31]  Antonio J. Martín,et al.  PEMFC electrode preparation by electrospray: Optimization of catalyst load and ionomer content , 2009 .

[32]  Qianpu Wang,et al.  Effectiveness factor of Pt utilization in cathode catalyst layer of polymer electrolyte fuel cells , 2008 .

[33]  Stephen J. Paddison,et al.  Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells , 2008 .

[34]  Xianguo Li Principles of fuel cells , 2005 .

[35]  A. Volinsky,et al.  Application of the standard porosimetry method for nanomaterials , 2005 .

[36]  Vincenzo Arcella,et al.  Hyflon Ion Membranes for Fuel Cells , 2005 .

[37]  Lin Wang,et al.  A parametric study of PEM fuel cell performances , 2003 .

[38]  K. Yasuda,et al.  Effects of ionomer content on mass transport in gas diffusion electrodes for proton exchange membrane fuel cells , 2003 .

[39]  Erik Middelman,et al.  Improved PEM fuel cell electrodes by controlled self-assembly , 2002 .

[40]  Keith B. Prater,et al.  Water management and stack design for solid polymer fuel cells , 1994 .

[41]  V. S. Bagotzky,et al.  The method of standard porosimetry. 1. Principles and possibilities , 1994 .