On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem
暂无分享,去创建一个
[1] Klaus Jansen,et al. The Maximum k-Dependent and f-Dependent Set Problem , 1993, ISAAC.
[2] Russell Impagliazzo,et al. Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..
[3] Rolf Niedermeier,et al. Exact combinatorial algorithms and experiments for finding maximum k-plexes , 2012, J. Comb. Optim..
[4] Dimitrios M. Thilikos,et al. An FPT 2-Approximation for Tree-Cut Decomposition , 2015, Algorithmica.
[5] Rolf Niedermeier,et al. Invitation to Fixed-Parameter Algorithms , 2006 .
[6] DÁNIEL MARX,et al. Immersions in Highly Edge Connected Graphs , 2013, SIAM J. Discret. Math..
[7] Rolf Niedermeier,et al. On Bounded-Degree Vertex Deletion parameterized by treewidth , 2012, Discret. Appl. Math..
[8] Paul Wollan,et al. The structure of graphs not admitting a fixed immersion , 2013, J. Comb. Theory, Ser. B.
[9] Ton Kloks. Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.
[10] Jakub Gajarský,et al. Kernelization Using Structural Parameters on Sparse Graph Classes , 2013, ESA.
[11] P. Erdös,et al. On a problem of sidon in additive number theory, and on some related problems , 1941 .
[12] Illya V. Hicks,et al. Combinatorial algorithms for the maximum k-plex problem , 2012, J. Comb. Optim..
[13] Christian Komusiewicz,et al. Isolation concepts for efficiently enumerating dense subgraphs , 2009, Theor. Comput. Sci..
[14] Stefan Szeider,et al. Backdoors into heterogeneous classes of SAT and CSP , 2017, J. Comput. Syst. Sci..
[15] Rolf Niedermeier,et al. A Generalization of Nemhauser and Trotter's Local Optimization Theorem , 2009, STACS.
[16] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[17] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..
[18] Arnaud Fréville,et al. The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..
[19] Christer Bäckström,et al. A complete parameterized complexity analysis of bounded planning , 2015, J. Comput. Syst. Sci..
[20] Rolf Niedermeier,et al. A generalization of Nemhauser and Trotterʼs local optimization theorem , 2009, J. Comput. Syst. Sci..
[21] Zhi-Zhong Chen,et al. A Linear Kernel for Co-Path/Cycle Packing , 2010, AAIM.
[22] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[23] Stephen B. Seidman,et al. A graph‐theoretic generalization of the clique concept* , 1978 .
[24] Martin Aigner,et al. Proofs from THE BOOK (3. ed.) , 2004 .
[25] Balabhaskar Balasundaram,et al. Approximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes , 2010, Optim. Lett..
[26] Jaroslav Nesetril,et al. Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.
[27] Sebastian Ordyniak,et al. Variable-Deletion Backdoors to Planning , 2015, AAAI.
[28] Sergiy Butenko,et al. Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..
[29] Robert Ganian,et al. Meta-kernelization with structural parameters , 2013, J. Comput. Syst. Sci..
[30] Michael R. Fellows,et al. Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.
[31] Robert Ganian,et al. Algorithmic Applications of Tree-Cut Width , 2015, MFCS.
[32] Dimitrios M. Thilikos,et al. Fast Fixed-Parameter Tractable Algorithms for Nontrivial Generalizations of Vertex Cover , 2001, WADS.
[33] Robert Ganian,et al. Solving Problems on Graphs of High Rank-Width , 2015, WADS.
[34] Robert Ganian,et al. Meta-kernelization using well-structured modulators , 2018, Discret. Appl. Math..