On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem

We study the parameterized complexity of the Bounded-Degree Vertex Deletion problem (BDD), where the aim is to find a maximum induced subgraph whose maximum degree is below a given degree bound. Our focus lies on parameters that measure the structural properties of the input instance. We first show that the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, pathwidth, treedepth, and even the size of a minimum vertex deletion set into graphs of pathwidth and treedepth at most three. We thereby resolve the main open question stated in Betzler, Bredereck, Niedermeier and Uhlmann (2012) concerning the complexity of BDD parameterized by the feedback vertex set number. On the positive side, we obtain fixed-parameter algorithms for the problem with respect to the decompositional parameter treecut width and a novel problem-specific parameter called the core fracture number.

[1]  Klaus Jansen,et al.  The Maximum k-Dependent and f-Dependent Set Problem , 1993, ISAAC.

[2]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[3]  Rolf Niedermeier,et al.  Exact combinatorial algorithms and experiments for finding maximum k-plexes , 2012, J. Comb. Optim..

[4]  Dimitrios M. Thilikos,et al.  An FPT 2-Approximation for Tree-Cut Decomposition , 2015, Algorithmica.

[5]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[6]  DÁNIEL MARX,et al.  Immersions in Highly Edge Connected Graphs , 2013, SIAM J. Discret. Math..

[7]  Rolf Niedermeier,et al.  On Bounded-Degree Vertex Deletion parameterized by treewidth , 2012, Discret. Appl. Math..

[8]  Paul Wollan,et al.  The structure of graphs not admitting a fixed immersion , 2013, J. Comb. Theory, Ser. B.

[9]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[10]  Jakub Gajarský,et al.  Kernelization Using Structural Parameters on Sparse Graph Classes , 2013, ESA.

[11]  P. Erdös,et al.  On a problem of sidon in additive number theory, and on some related problems , 1941 .

[12]  Illya V. Hicks,et al.  Combinatorial algorithms for the maximum k-plex problem , 2012, J. Comb. Optim..

[13]  Christian Komusiewicz,et al.  Isolation concepts for efficiently enumerating dense subgraphs , 2009, Theor. Comput. Sci..

[14]  Stefan Szeider,et al.  Backdoors into heterogeneous classes of SAT and CSP , 2017, J. Comput. Syst. Sci..

[15]  Rolf Niedermeier,et al.  A Generalization of Nemhauser and Trotter's Local Optimization Theorem , 2009, STACS.

[16]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[17]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..

[18]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[19]  Christer Bäckström,et al.  A complete parameterized complexity analysis of bounded planning , 2015, J. Comput. Syst. Sci..

[20]  Rolf Niedermeier,et al.  A generalization of Nemhauser and Trotterʼs local optimization theorem , 2009, J. Comput. Syst. Sci..

[21]  Zhi-Zhong Chen,et al.  A Linear Kernel for Co-Path/Cycle Packing , 2010, AAIM.

[22]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[23]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[24]  Martin Aigner,et al.  Proofs from THE BOOK (3. ed.) , 2004 .

[25]  Balabhaskar Balasundaram,et al.  Approximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes , 2010, Optim. Lett..

[26]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[27]  Sebastian Ordyniak,et al.  Variable-Deletion Backdoors to Planning , 2015, AAAI.

[28]  Sergiy Butenko,et al.  Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..

[29]  Robert Ganian,et al.  Meta-kernelization with structural parameters , 2013, J. Comput. Syst. Sci..

[30]  Michael R. Fellows,et al.  Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.

[31]  Robert Ganian,et al.  Algorithmic Applications of Tree-Cut Width , 2015, MFCS.

[32]  Dimitrios M. Thilikos,et al.  Fast Fixed-Parameter Tractable Algorithms for Nontrivial Generalizations of Vertex Cover , 2001, WADS.

[33]  Robert Ganian,et al.  Solving Problems on Graphs of High Rank-Width , 2015, WADS.

[34]  Robert Ganian,et al.  Meta-kernelization using well-structured modulators , 2018, Discret. Appl. Math..