Robust Shewhart-CUSUM design for monitoring process mean using repetitive sampling

[1]  Shichang Du,et al.  An earth mover's distance based multivariate generalized likelihood ratio control chart for effective monitoring of 3D point cloud surface , 2022, Comput. Ind. Eng..

[2]  B. Bergquist,et al.  Effect of measurement uncertainty on combined quality control charts , 2022, Computers & industrial engineering.

[3]  A. Erem,et al.  A bivariate exponentially weighted moving average control chart based on exceedance statistics , 2022, Comput. Ind. Eng..

[4]  J. Malela‐Majika Nonparametric precedence chart with repetitive sampling , 2022, Stat.

[5]  S. Y. Teh,et al.  On designing TEWMA-Tukey control charts for normal and non-normal processes using single and repetitive sampling schemes , 2022, Comput. Ind. Eng..

[6]  C. Koukouvinos,et al.  The quadruple exponentially weighted moving average control chart , 2021, Quality Technology & Quantitative Management.

[7]  William H. Woodall,et al.  A critique of a variety of “memory-based” process monitoring methods , 2021, Journal of Quality Technology.

[8]  Christos Koukouvinos,et al.  The effect of parameters estimation on the performance of variables control charts under repetitive sampling , 2021, Communications in Statistics - Theory and Methods.

[9]  Philippe Castagliola,et al.  Revised triple sampling control charts for the mean with known and estimated process parameters , 2021, Int. J. Prod. Res..

[10]  Abdul Haq,et al.  New CUSUM and Shewhart‐CUSUM charts for monitoring the process mean , 2021, Qual. Reliab. Eng. Int..

[11]  Jean-Claude Malela-Majika,et al.  A new double sampling scheme to monitor the process mean of autocorrelated observations using an AR(1) model with a skip sampling strategy , 2021, Comput. Ind. Eng..

[12]  G. Celano,et al.  A distribution-free Shewhart-type Mann–Whitney control chart for monitoring finite horizon productions , 2020, Int. J. Prod. Res..

[13]  Jean-Claude Malela-Majika,et al.  New distribution-free memory-type control charts based on the Wilcoxon rank-sum statistic , 2020 .

[14]  M. Aslam,et al.  EWMA and DEWMA repetitive control charts under non-normal processes , 2020, Journal of applied statistics.

[15]  S. Sheu,et al.  A nonparametric generally weighted moving average sign chart based on repetitive sampling , 2019, Commun. Stat. Simul. Comput..

[16]  Chi-Jui Huang,et al.  Generally weighted moving average control charts using repetitive sampling , 2019, Communications in Statistics - Theory and Methods.

[17]  T. Nawaz,et al.  On designing new optimal synthetic Tukey’s control charts , 2019, Journal of Statistical Computation and Simulation.

[18]  Muhammad Riaz,et al.  On the Performance of Median Based Tukey and Tukey-EWMA Charts Under Rational Subgrouping , 2019, Scientia Iranica.

[19]  S. Kamal,et al.  New EWMA Control Charts for Monitoring Mean Under Non-normal Processes Using Repetitive Sampling , 2018, Iranian Journal of Science and Technology, Transactions A: Science.

[20]  Muhammad Awais,et al.  New Shewhart-EWMA and Shewhart-CUSUM Control Charts for Monitoring Process Mean , 2018, Scientia Iranica.

[21]  Olatunde A. Adeoti,et al.  Capability index-based control chart for monitoring process mean using repetitive sampling , 2018 .

[22]  Olatunde A. Adeoti,et al.  A new double exponentially weighted moving average control chart using repetitive sampling , 2017 .

[23]  Muhammad Riaz,et al.  Mixed Tukey EWMA-CUSUM control chart and its applications , 2017 .

[24]  Muhammad Riaz,et al.  Robust Tukey–CUSUM Control Chart for Process Monitoring , 2016, Qual. Reliab. Eng. Int..

[25]  Imad Alsyouf,et al.  An optimization design of the combined Shewhart-EWMA control chart , 2016 .

[26]  Saddam Akber Abbasi,et al.  On the Performance of Phase I Dispersion Control Charts for Process Monitoring , 2015, Qual. Reliab. Eng. Int..

[27]  Muhammad Riaz,et al.  Mixed Cumulative Sum–Exponentially Weighted Moving Average Control Charts: An Efficient Way of Monitoring Process Location , 2015, Qual. Reliab. Eng. Int..

[28]  Muhammad Riaz,et al.  Performance of Tukey's and Individual/Moving Range Control Charts , 2015, Qual. Reliab. Eng. Int..

[29]  Pei-Hsi Lee,et al.  A Note on “Modified Tukey's Control Chart” , 2015, Commun. Stat. Simul. Comput..

[30]  Cheng Shih Lin,et al.  Economically optimum design of Tukey’s control chart with asymmetrical control limits for controlling process mean of skew population distribution , 2013 .

[31]  Muhammad Riaz,et al.  Improving the Performance of Combined Shewhart–Cumulative Sum Control Charts , 2013, Qual. Reliab. Eng. Int..

[32]  Muhammad Riaz,et al.  Mixed Exponentially Weighted Moving Average–Cumulative Sum Charts for Process Monitoring , 2013, Qual. Reliab. Eng. Int..

[33]  Milton Smith,et al.  Modified Tukey's Control Chart , 2012, Commun. Stat. Simul. Comput..

[34]  Mei Yang,et al.  Optimization designs of the combined Shewhart-CUSUM control charts , 2008, Comput. Stat. Data Anal..

[35]  Pei-Hsi Lee,et al.  ARL Performance of the Tukey's Control Chart , 2008, Commun. Stat. Simul. Comput..

[36]  Farrokh Alemi,et al.  Tukey's Control Chart , 2004, Quality management in health care.

[37]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[38]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[39]  James M. Lucas,et al.  Combined Shewhart-CUSUM Quality Control Schemes , 1982 .

[40]  Robert E. Sherman,et al.  Design and Evaluation of a Repetitive Group Sampling Plan , 1965 .

[41]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[42]  Muhammad Riaz,et al.  On designing a new Tukey-EWMA control chart for process monitoring , 2016 .