k-Partite graph reinforcement and its application in multimedia information retrieval

In many example-based information retrieval tasks, example query actually contains multiple sub-queries. For example, in 3D object retrieval, the query is an object described by multiple views. In content-based video retrieval, the query is a video clip that contains multiple frames. Without prior knowledge, the most intuitive approach is to treat the sub-queries equally without difference. In this paper, we propose a k-partite graph reinforcement approach to fuse these sub-queries based on the to-be-retrieved database. The approach first collects the top retrieved results. These results are regarded as pseudo-relevant samples and then a k-partite graph reinforcement is performed on these samples and the query. In the reinforcement process, the weights of the sub-queries are updated by an iterative process. We present experiments on 3D object retrieval and content-based video clip retrieval, and the results demonstrate that our method effectively boosts retrieval performance.

[1]  Tae-Seong Kim,et al.  Content-based facial image retrieval using constrained independent component analysis , 2011, Inf. Sci..

[2]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[3]  Matthieu Cord,et al.  An application of swarm intelligence to distributed image retrieval , 2012, Inf. Sci..

[4]  Paul Over,et al.  High-level feature detection from video in TRECVid: a 5-year retrospective of achievements , 2009 .

[5]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[6]  Chang-Hsing Lee,et al.  A new 3D model retrieval approach based on the elevation descriptor , 2007, Pattern Recognit..

[7]  Ryutarou Ohbuchi,et al.  Salient local visual features for shape-based 3D model retrieval , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[8]  Seth Teller,et al.  Video matching , 2004, SIGGRAPH 2004.

[9]  Xian-Sheng Hua,et al.  Bayesian video search reranking , 2008, ACM Multimedia.

[10]  Meng Wang,et al.  VisionGo: Towards video retrieval with joint exploration of human and computer , 2011, Inf. Sci..

[11]  Qionghai Dai,et al.  Weighted Subspace Distance and Its Applications to Object Recognition and Retrieval With Image Sets , 2009, IEEE Signal Processing Letters.

[12]  Chia-Wen Lin,et al.  Fast coarse-to-fine video retrieval using shot-level spatio-temporal statistics , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[13]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[14]  Wen Gao,et al.  Towards semantic embedding in visual vocabulary , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Alberto Del Bimbo,et al.  Content-based retrieval of 3D models , 2006, TOMCCAP.

[16]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[17]  Xuelong Li,et al.  Modality Mixture Projections for Semantic Video Event Detection , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[18]  Zhang Xiong,et al.  ModelSeek: an effective 3D model retrieval system , 2011, Multimedia Tools and Applications.

[19]  Milind R. Naphade,et al.  Learning the semantics of multimedia queries and concepts from a small number of examples , 2005, MULTIMEDIA '05.

[20]  Paul Suetens,et al.  SHREC'10 Track: Non-rigid 3D Shape Retrieval , 2010, 3DOR@Eurographics.

[21]  Petros Daras,et al.  A 3D Shape Retrieval Framework Supporting Multimodal Queries , 2010, International Journal of Computer Vision.

[22]  Qi Tian,et al.  Less is More: Efficient 3-D Object Retrieval With Query View Selection , 2011, IEEE Transactions on Multimedia.

[23]  Marc Rioux,et al.  Nefertiti: A tool for 3-D shape databases management , 1999 .

[24]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Whoi-Yul Kim,et al.  A region-based shape descriptor using Zernike moments , 2000, Signal Process. Image Commun..

[26]  Meng Wang,et al.  Active learning in multimedia annotation and retrieval: A survey , 2011, TIST.

[27]  Ashish Ghosh,et al.  Fuzzy clustering algorithms for unsupervised change detection in remote sensing images , 2011, Inf. Sci..

[28]  Meng Wang,et al.  Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation , 2009, IEEE Transactions on Multimedia.

[29]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[30]  E. Nadaraya On Estimating Regression , 1964 .

[31]  Xiuzi Ye,et al.  3D Object Retrieval by Bipartite Matching , 2004, ICADL.

[32]  Yue Gao,et al.  3D model comparison using spatial structure circular descriptor , 2010, Pattern Recognit..

[33]  Xian-Sheng Hua,et al.  Towards a Relevant and Diverse Search of Social Images , 2010, IEEE Transactions on Multimedia.

[34]  Sang Hyun Kim,et al.  An efficient algorithm for video sequence matching using the modified Hausdorff distance and the directed divergence , 2002, IEEE Trans. Circuits Syst. Video Technol..

[35]  Benjamin B. Kimia,et al.  A Similarity-Based Aspect-Graph Approach to 3D Object Recognition , 2004, International Journal of Computer Vision.

[36]  Rong Yan,et al.  Multimedia Search with Pseudo-relevance Feedback , 2003, CIVR.

[37]  Lifeng Sun,et al.  Web video topic discovery and tracking via bipartite graph reinforcement model , 2008, WWW.

[38]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[39]  Meng Wang,et al.  Unified Video Annotation via Multigraph Learning , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[40]  Raimondo Schettini,et al.  Halfway through the semantic gap: Prosemantic features for image retrieval , 2011, Inf. Sci..

[41]  Yue Gao,et al.  3D model retrieval using weighted bipartite graph matching , 2011, Signal Process. Image Commun..

[42]  Qionghai Dai,et al.  Multilabel Neighborhood Propagation for Region-Based Image Retrieval , 2008, IEEE Transactions on Multimedia.

[43]  Wen Gao,et al.  Location Discriminative Vocabulary Coding for Mobile Landmark Search , 2011, International Journal of Computer Vision.

[44]  Qionghai Dai,et al.  Statistical modeling and many-to-many matching for view-based 3D object retrieval , 2010, Signal Process. Image Commun..

[45]  Yue Gao,et al.  View-based 3D model retrieval with probabilistic graph model , 2010, Neurocomputing.

[46]  Andrea Fusiello,et al.  The bag of words approach for retrieval and categorization of 3D objects , 2010, The Visual Computer.

[47]  Mohamed Daoudi,et al.  A Bayesian 3-D Search Engine Using Adaptive Views Clustering , 2007, IEEE Transactions on Multimedia.

[48]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Wei Xiong,et al.  Query by video clip , 1999, Multimedia Systems.

[50]  Mohamed Daoudi,et al.  3D models retrieval by using characteristic views , 2002, Object recognition supported by user interaction for service robots.

[51]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[52]  Bo Zhang,et al.  Relevance feedback in region-based image retrieval , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[53]  Zheng Qin,et al.  A powerful relevance feedback mechanism for content-based 3D model retrieval , 2007, Multimedia Tools and Applications.

[54]  BENJAMIN BUSTOS,et al.  Feature-based similarity search in 3D object databases , 2005, CSUR.

[55]  Alexander G. Hauptmann,et al.  Successful approaches in the TREC video retrieval evaluations , 2004, MULTIMEDIA '04.

[56]  Wei-Ying Ma,et al.  Bipartite graph reinforcement model for web image annotation , 2007, ACM Multimedia.

[57]  Yuxin Peng,et al.  Clip-based similarity measure for query-dependent clip retrieval and video summarization , 2006, IEEE Trans. Circuits Syst. Video Technol..

[58]  Mohamed Daoudi,et al.  A Bayesian approach for 3D models retrieval based on characteristic views , 2004, ICPR 2004.

[59]  Chong-Wah Ngo,et al.  EMD-Based Video Clip Retrieval by Many-to-Many Matching , 2005, CIVR.