A triangular membrane element with rotational degrees of freedom

Abstract A new plane-stress triangular element is derived using the free formulation of Bergan and Nygard. The triangle possesses nine degrees of freedom: six corner translations and three corner normal rotations. The element is coordinate-invariant and passes the patch test for any geometry. Two free parameters in the formulation may be adjusted to optimize the behavior for in-plane bending patterns. With the recommended parameter choices the element performance is significantly better than that of the constant-strain triangle. Because of the presence of the rotational freedoms, this new element appears especially suitable as membrane component of a flat triangular element for modelling general shell structures.

[1]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[2]  Robert D. Cook,et al.  Ways to improve the bending response of finite elements , 1977 .

[3]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .

[4]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[5]  Lars Hanssen,et al.  Finite elements based on a new procedure for computing stiffness coefficients , 1976 .

[6]  P. G. Bergan,et al.  Finite elements based on energy orthogonal functions , 1980 .

[7]  Theodore H. H. Pian,et al.  Basis of finite element methods for solid continua , 1969 .

[8]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[9]  Robert D. Cook,et al.  Improved Two-Dimensional Finite Element , 1974 .

[10]  P. Bergan,et al.  Finite elements with increased freedom in choosing shape functions , 1984 .

[11]  Singiresu S. Rao The finite element method in engineering , 1982 .

[12]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[13]  B O Almroth,et al.  Numerical Procedures for Analysis of Structural Shells. , 1981 .

[14]  B. Irons,et al.  Techniques of Finite Elements , 1979 .

[15]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[16]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[17]  B. J. Hartz,et al.  Higher-Order Finite Element for Plane Stress , 1967 .