A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature.

Self-assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod-packing 3D microporous hydrogen-bonded organic framework (HOF-3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure.

[1]  A. J. Blake,et al.  A Robust Binary Supramolecular Organic Framework (SOF) with High CO2 Adsorption and Selectivity , 2014, Journal of the American Chemical Society.

[2]  R. Krishna The Maxwell–Stefan description of mixture diffusion in nanoporous crystalline materials , 2014 .

[3]  S. Sakaki,et al.  Self-Accelerating CO Sorption in a Soft Nanoporous Crystal , 2014, Science.

[4]  P. Li,et al.  A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols. , 2014, Journal of the American Chemical Society.

[5]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[6]  Cheng Wang,et al.  Metal-organic frameworks as a tunable platform for designing functional molecular materials. , 2013, Journal of the American Chemical Society.

[7]  Ji-Hua Deng,et al.  A microporous hydrogen-bonded organic framework: exceptional stability and highly selective adsorption of gas and liquid. , 2013, Journal of the American Chemical Society.

[8]  Tony Pham,et al.  A robust molecular porous material with high CO2 uptake and selectivity. , 2013, Journal of the American Chemical Society.

[9]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[10]  Jing Li,et al.  MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. , 2013, Chemical communications.

[11]  Yuanjing Cui,et al.  A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature , 2013 .

[12]  M. O'keeffe,et al.  A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas. , 2012, Chemical communications.

[13]  Rajamani Krishna,et al.  Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons , 2012 .

[14]  I. M. Oppel,et al.  Rationale Herstellung eines extrinsisch porösen Molekülkristalls mit einer außergewöhnlich großen spezifischen Oberfläche , 2012 .

[15]  Iris M. Oppel,et al.  Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. , 2012, Angewandte Chemie.

[16]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[17]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[18]  Zhangjing Zhang,et al.  Microporous metal–organic frameworks for acetylene storage and separation , 2011 .

[19]  S. Xiang,et al.  A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. , 2011, Journal of the American Chemical Society.

[20]  Rajamani Krishna,et al.  Screening metal–organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber , 2011 .

[21]  S. Nguyen,et al.  Kinetic separation of propene and propane in metal-organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. , 2011, Journal of the American Chemical Society.

[22]  Qiang Xu,et al.  Porous metal-organic frameworks as platforms for functional applications. , 2011, Chemical communications.

[23]  K. Thomas,et al.  Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. , 2011, Nature communications.

[24]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[25]  Michael O'Keeffe,et al.  Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology , 2010 .

[26]  P. Feng,et al.  Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. , 2009, Journal of the American Chemical Society.

[27]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  Jie‐Peng Zhang,et al.  Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. , 2009, Journal of the American Chemical Society.

[29]  Davide M. Proserpio,et al.  Netze und Gyroide: wenig bekannt und doch in Chemie, Materialwissenschaften und Mathematik allgegenwärtig , 2008 .

[30]  Michael O'Keeffe,et al.  A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. , 2008, Angewandte Chemie.

[31]  S. Kitagawa,et al.  Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(I)/Cu(I) 3,3',5,5'-tetrametyl-4,4'-bipyrazolate. , 2008, Journal of the American Chemical Society.

[32]  J. Wuest,et al.  Engineering hydrogen-bonded molecular crystals built from derivatives of hexaphenylbenzene and related compounds. , 2007, Journal of the American Chemical Society.

[33]  J. Wuest,et al.  Engineering crystals by the strategy of molecular tectonics. , 2005, Chemical communications.

[34]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[35]  T. Maris,et al.  Molecular tectonics. Porous hydrogen-bonded networks built from derivatives of 9,9'-spirobifluorene. , 2004, The Journal of organic chemistry.

[36]  Rajamani Krishna,et al.  Modelling issues in zeolite based separation processes , 2003 .

[37]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[38]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .