Field-assisted semiconductor photoemitters for the 1—2-µm range

Photoemission data and model calculations are presented for a field-assisted semiconductor photoemitter which has achieved reflection-mode quantum efficiencies as high as 8.0 percent at 1.55 µm. The cathodes are p-p heterostructures employing lattice-matched InP-InGaAsP alloys. A thin electron semitransparent Schottky barrier provides the biasing contact for field-assisted electron emission. Parameters for optimal photoemission and sources of dark-current emission are discussed.

[1]  R. Bell Thermionic emission of the GaAs photocathode , 1969 .

[2]  P. Thornton,et al.  FIELD‐ENHANCED PHOTOEMISSION FROM LARGE‐AREA Ge DIODES AT LOW TEMPERATURES , 1967 .

[3]  D. Schroder,et al.  The semiconductor field-emission photocathode , 1974 .

[4]  L. W. James,et al.  Transferred electron photoemission from InP , 1974 .

[5]  T. Maloney,et al.  Quantum efficiency of InP field‐assisted photocathodes , 1980 .

[6]  J. Burton Electron Emission from Avalanche Breakdown in Silicon , 1957 .

[7]  T. Maloney,et al.  Transient and steady‐state electron transport properties of GaAs and InP , 1977 .

[8]  L. W. James,et al.  Behavior of Cesium Oxide as a Low Work‐Function Coating , 1970 .

[9]  W. Spicer,et al.  Photoemission from Si Induced by an Internal Electric Field , 1960 .

[10]  W. Spicer,et al.  Field Induced Photoemission and Hot‐Electron Emission from Germanium , 1960 .

[11]  L. W. James,et al.  Growth and characterization of InGaAsP–InP lattice‐matched heterojunctions , 1976 .

[12]  Michael A. Littlejohn,et al.  Velocity‐field characteristics of Ga1−xInxP1−yAsy quaternary alloys , 1977 .

[13]  L. W. James,et al.  Field-assisted photoemission from an Inp/IngaAsp/Inp cathode , 1975 .

[14]  A. Milnes,et al.  Heterojunction Photocathode Concepts , 1971 .

[15]  W. Spicer,et al.  The probing depth in photoemission and auger-electron spectroscopy , 1974 .

[16]  L. W. James,et al.  Band Structure and High-Field Transport Properties of InP , 1970 .

[17]  P. E. Gregory,et al.  Hot‐electron attenuation length in Ag/InP Schottky barriers , 1979 .

[18]  G. A. Antypas,et al.  Field‐assisted minority carrier electron transport across a p‐InGaAs/p‐InP heterojunction , 1978 .

[19]  V. Dalal Possible Field‐Assisted Infrared Photocathode , 1972 .

[20]  R. Bell Thermionic emission from 3–5 infra-red photocathodes , 1970 .

[21]  L. W. James,et al.  Schottky‐barrier height of Au/p‐InGaAsP alloys lattice‐matched to InP , 1976 .

[22]  B. Ridley Anatomy of the transferred‐electron effect in III‐V semiconductors , 1977 .

[23]  R. Bell,et al.  PHOTOEMISSION FROM InP‐Cs‐O , 1968 .

[24]  E. A. Davies Hot-electron emission from n-silicon , 1964 .

[25]  R. H. Williams,et al.  Cleaved surfaces of indium phosphide and their interfaces with metal electrodes , 1977 .

[26]  J. Escher,et al.  Transferred‐electron photoemission to 1.4 μm , 1976 .

[27]  R. H. Williams,et al.  Metal contacts to silicon and indium‐phosphide‐cleaved surfaces and the influence of intermediate adsorbed layers , 1979 .

[28]  R. Sahai,et al.  Double-heterojunction photocathode devices , 1975 .

[29]  K. Umeoka,et al.  Field‐Induced Photoelectron Emission from Silicon Surface‐Barrier Diodes , 1967 .

[30]  Field‐Induced Photoelectron Emission from p‐Type Silicon Aluminum Surface‐Barrier Diodes , 1970 .