Graphical algorithms and threshold error rates for the 2d color code

Recent work on fault-tolerant quantum computation making use of topological errorcorrection shows great potential, with the 2d surface code possessing a threshold errorrate approaching 1% [1, 2]. However, the 2d surface code requires the use of a complexstate distillation procedure to achieve universal quantum computation. The color codeof [3] is a related scheme partially solving the problem, providing a means to performall Clifford group gates transversally. We review the color code and its error correctingmethodology, discussing one approximate technique based on graph matching. We derivean analytic lower bound to the threshold error rate of 6.25% under error-free syndromeextraction, while numerical simulations indicate it may be as high as 13.3%. Inclusion offaulty syndrome extraction circuits drops the threshold to approximately 0.10 ± 0.01%.

[1]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[2]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[3]  Austin G. Fowler,et al.  Topological cluster state quantum computing , 2008, Quantum Inf. Comput..

[4]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[5]  William J. Cook,et al.  Computing Minimum-Weight Perfect Matchings , 1999, INFORMS J. Comput..

[6]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[7]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  E. Knill,et al.  Accuracy threshold for quantum computation , 1996 .

[10]  Helmut G Katzgraber,et al.  Error threshold for color codes and random three-body Ising models. , 2009, Physical review letters.

[11]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[12]  Vwani P. Roychowdhury,et al.  Latency in local, two-dimensional, fault-tolerant quantum computing , 2008, Quantum Inf. Comput..

[13]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[14]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[15]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..

[16]  Austin G. Fowler,et al.  Two-dimensional color-code quantum computation , 2011 .

[17]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[18]  A. G. Fowler,et al.  Threshold error rates for the toric and surface codes , 2009, 0905.0531.

[19]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[21]  David P. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2007, Quantum Inf. Comput..

[22]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .