Frontiers in Non-invasive Cardiac Mapping: Rotors in Atrial Fibrillation-Body Surface Frequency-Phase Mapping.

Experimental and clinical data demonstrate that atrial fibrillation (AF) maintenance in animals and groups of patients depends on localized reentrant sources localized primarily to the pulmonary veins (PVs) and the left atrium(LA) posterior wall in paroxysmal AF but elsewhere, including the right atrium (RA), in persistent AF. Moreover, AF can be eliminated by directly ablating AF-driving sources or "rotors," that exhibit high-frequency, periodic activity. The RADAR-AF randomized trial demonstrated that an ablation procedure based on a more target-specific strategy aimed at eliminating high frequency sites responsible for AF maintenance is as efficacious as and safer than empirically isolating all the PVs. In contrast to the standard ECG, global atrial noninvasive frequency analysis allows non-invasive identification of high-frequency sources before the arrival at the electrophysiology laboratory for ablation. Body surface potential map (BSPM) replicates the endocardial distribution of DFs with localization of the highest DF (HDF) and can identify small areas containing the high-frequency sources. Overall, BSPM had a sensitivity of 75% and specificity of 100% for capturing intracardiac EGMs as having LARA DF gradient. However, raw BSPM data analysis of AF patterns of activity showed incomplete and instable reentrant patterns of activation. Thus, we developed an analysis approach whereby a narrow band-pass filtering allowed selecting the electrical activity projected on the torso at the HDF, which stabilized the projection of rotors that potentially drive AF on the surface. Consequently, driving reentrant patterns ("rotors") with spatiotemporal stability during >70% of the AF time could be observed noninvasibly after HDF-filtering. Moreover, computer simulations found that the combination of BSPM phase mapping with DF analysis enabled the discrimination of true rotational patterns even during the most complex AF. Altogether, these studies show that the combination of DF analysis with phase maps of HDF-filtered surface ECG recordings allows noninvasive localization of atrial reentries during AF and further a physiologically-based rationale for personalized diagnosis and treatment of patients with AF.

[1]  J Clémenty,et al.  Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. , 1998, The New England journal of medicine.

[2]  Raatikainen Mj,et al.  New antiarrhythmic drugs for treatment of atrial fibrillation , 2010 .

[3]  O. Alfieri,et al.  Atrial Electroanatomic Remodeling After Circumferential Radiofrequency Pulmonary Vein Ablation: Efficacy of an Anatomic Approach in a Large Cohort of Patients With Atrial Fibrillation , 2001, Circulation.

[4]  José Jalife,et al.  Translational Research in Atrial Fibrillation: A Quest for Mechanistically Based Diagnosis and Therapy , 2012, Circulation. Arrhythmia and electrophysiology.

[5]  Javier Moreno,et al.  Activation of Inward Rectifier Potassium Channels Accelerates Atrial Fibrillation in Humans: Evidence for a Reentrant Mechanism , 2006, Circulation.

[6]  OmerBerenfeld,et al.  Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans , 2005 .

[7]  Francisco Castells,et al.  Noninvasive Mapping of Human Atrial Fibrillation , 2009, Cardiovascular Electrophysiology.

[8]  Matthew Wright,et al.  Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up? , 2011, Journal of the American College of Cardiology.

[9]  Hsuan-Ming Tsao,et al.  Frequency analysis in different types of paroxysmal atrial fibrillation. , 2006, Journal of the American College of Cardiology.

[10]  Omer Berenfeld,et al.  Mechanisms of fractionated electrograms formation in the posterior left atrium during paroxysmal atrial fibrillation in humans. , 2011, Journal of the American College of Cardiology.

[11]  J. Millet,et al.  Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping , 2013, Circulation. Arrhythmia and electrophysiology.

[12]  R. Lux,et al.  Derivation of an optimal lead set for measuring ectopic atrial activation from the pulmonary veins by using body surface mapping. , 2000, Journal of electrocardiology.

[13]  A. Skanes,et al.  Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. , 1998, Circulation.

[14]  Wouter-Jan Rappel,et al.  Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. , 2012, Journal of the American College of Cardiology.

[15]  Shih-AnnChen,et al.  Catheter Ablation of Paroxysmal Atrial Fibrillation Initiated by Non–Pulmonary Vein Ectopy , 2003 .

[16]  Kenneth A Ellenbogen,et al.  2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (Updating the 2006 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. , 2011, Heart rhythm.

[17]  J Clémenty,et al.  A focal source of atrial fibrillation treated by discrete radiofrequency ablation. , 1997, Circulation.

[18]  M. Mansour,et al.  Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart , 2001, Circulation.

[19]  O. Berenfeld Toward discerning the mechanisms of atrial fibrillation from surface electrocardiogram and spectral analysis. , 2010, Journal of electrocardiology.

[20]  RaviMandapati,et al.  Stable Microreentrant Sources as a Mechanism of Atrial Fibrillation in the Isolated Sheep Heart , 2000 .

[21]  José Jalife,et al.  Frequency-Dependent Breakdown of Wave Propagation Into Fibrillatory Conduction Across the Pectinate Muscle Network in the Isolated Sheep Right Atrium , 2002, Circulation research.

[22]  Sanjiv M Narayan,et al.  Initial Independent Outcomes from Focal Impulse and Rotor Modulation Ablation for Atrial Fibrillation: Multicenter FIRM Registry , 2014, Journal of cardiovascular electrophysiology.

[23]  José Jalife,et al.  Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation: a noninferiority randomized multicenter RADAR-AF trial. , 2014, Journal of the American College of Cardiology.

[24]  David Keane,et al.  2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. , 2012, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[25]  Robert Ploutz-Snyder,et al.  Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. , 2009, Heart rhythm.

[26]  M. Mansour,et al.  Spatially Distributed Dominant Excitation Frequencies Reveal Hidden Organization in Atrial Fibrillation in the Langendorff‐Perfused Sheep Heart , 2000, Journal of cardiovascular electrophysiology.

[27]  Robert Ploutz-Snyder,et al.  Mechanisms of Wave Fractionation at Boundaries of High-Frequency Excitation in the Posterior Left Atrium of the Isolated Sheep Heart During Atrial Fibrillation , 2006, Circulation.

[28]  Omer Berenfeld,et al.  Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. , 2014, Heart rhythm.

[29]  F. Sacher,et al.  Catheter Ablation of Long‐Lasting Persistent Atrial Fibrillation: Critical Structures for Termination , 2005, Journal of cardiovascular electrophysiology.

[30]  Sanjiv M Narayan,et al.  Direct or coincidental elimination of stable rotors or focal sources may explain successful atrial fibrillation ablation: on-treatment analysis of the CONFIRM trial (Conventional ablation for AF with or without focal impulse and rotor modulation). , 2013, Journal of the American College of Cardiology.

[31]  S. Ratcliffe,et al.  Single procedure efficacy of isolating all versus arrhythmogenic pulmonary veins on long-term control of atrial fibrillation: a prospective randomized study. , 2008, Heart rhythm.