The long-term evolution of neutron star merger remnants – I. The impact of r-process nucleosynthesis

We follow the long-term evolution of the dynamic ejecta of neutron star mergers for up to 100 years and over a density range of roughly 40 orders of magnitude. We include the nuclear energy input from the freshly synthesized, radioactively decaying nuclei in our simulations and study its effects on the remnant dynamics. Although the nuclear heating substantially alters the long-term evolution, we find that running nuclear networks over purely hydrodynamic simulations (i.e. without heating) yields actually acceptable nucleosynthesis results. The main dynamic effect of the radioactive heating is to quickly smooth out inhomogeneities in the initial mass distribution, subsequently the evolution proceeds self-similarly and after 100 years the remnant still carries the memory of the initial binary mass ratio. We also explore the nucleosynthetic yields for two mass ejection channels. The dynamic ejecta very robustly produce 'strong' r-process elements with A > 130 with a pattern that is essentially independent of the details of the merging system. From a simple model we find that neutrino-driven winds yield 'weak' r-process contributions with 50 < A < 130 whose abundance patterns vary substantially between different merger cases. This is because their electron fraction, set by the ratio of neutrino luminosities, varies considerably from case to case. Such winds do not produce any Ni-56, but a range of radioactive isotopes that are long-lived enough to produce a second, radioactively powered electromagnetic transient in addition to the 'macronova' from the dynamic ejecta. While our wind model is very simple, it nevertheless demonstrates the potential of such neutrino-driven winds for electromagnetic transients and it motivates further, more detailed neutrino-hydrodynamic studies. The properties of the mentioned transients are discussed in more detail in a companion paper.

[1]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants { II. Radioactively powered transients , 2013, 1307.2943.

[2]  Mansi M. Kasliwal,et al.  ON DISCOVERING ELECTROMAGNETIC EMISSION FROM NEUTRON STAR MERGERS: THE EARLY YEARS OF TWO GRAVITATIONAL WAVE DETECTORS , 2013, 1309.1554.

[3]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[4]  K. Ioka,et al.  Anisotropic mass ejection from black hole-neutron star binaries: Diversity of electromagnetic counterparts , 2013, 1305.6309.

[5]  B. Metzger,et al.  Delayed outflows from black hole accretion tori following neutron star binary coalescence , 2013, 1304.6720.

[6]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[7]  D. Kasen,et al.  OPACITIES AND SPECTRA OF THE r-PROCESS EJECTA FROM NEUTRON STAR MERGERS , 2013, 1303.5788.

[8]  J. Zrake,et al.  MAGNETIC ENERGY PRODUCTION BY TURBULENCE IN BINARY NEUTRON STAR MERGERS , 2013, 1303.1450.

[9]  Garching,et al.  SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS , 2013, 1302.6530.

[10]  K. Hotokezaka,et al.  Mass ejection from the merger of binary neutron stars , 2012, 1212.0905.

[11]  S. Rosswog The dynamic ejecta of compact object mergers and eccentric collisions , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  I. Mandel,et al.  Electromagnetic transients as triggers in searches for gravitational waves from compact binary mergers , 2012, 1209.3027.

[13]  E. Nakar,et al.  The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions , 2012, 1204.6240.

[14]  E. Nakar,et al.  The electromagnetic signals of compact binary mergers , 2012, 1204.6242.

[15]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[16]  J. Kneller,et al.  Neutrino oscillations above black hole accretion disks: disks with electron-flavor emission , 2012, 1207.6648.

[17]  S. Rosswog,et al.  On the astrophysical robustness of the neutron star merger r-process , 2012, 1206.2379.

[18]  A. Perego,et al.  MAGNETOROTATIONALLY DRIVEN SUPERNOVAE AS THE ORIGIN OF EARLY GALAXY r-PROCESS ELEMENTS? , 2012, 1203.0616.

[19]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[20]  H. Janka,et al.  The r-PROCESS IN THE NEUTRINO-DRIVEN WIND FROM A BLACK-HOLE TORUS , 2011, 1106.6142.

[21]  R. Surman,et al.  NEUTRINO SPECTRA FROM ACCRETION DISKS: NEUTRINO GENERAL RELATIVISTIC EFFECTS AND THE CONSEQUENCES FOR NUCLEOSYNTHESIS , 2011, 1105.6371.

[22]  Tsvi Piran,et al.  Detectable radio flares following gravitational waves from mergers of binary neutron stars , 2011, Nature.

[23]  Garching,et al.  r-PROCESS NUCLEOSYNTHESIS IN DYNAMICALLY EJECTED MATTER OF NEUTRON STAR MERGERS , 2011, 1107.0899.

[24]  H. Janka,et al.  The decompression of the outer neutron star crust and r-process nucleosynthesis , 2011, 1105.2453.

[25]  William H. Lee,et al.  ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.

[26]  K. Kratz,et al.  What are the astrophysical sites for the r-process and the production of heavy elements? , 2011 .

[27]  Miguel A. Aloy,et al.  THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS , 2011, 1101.4298.

[28]  B. Giacomazzo,et al.  Accurate evolutions of inspiralling and magnetized neutron-stars: equal-mass binaries , 2010, 1009.2468.

[29]  V. Springel Smoothed Particle Hydrodynamics in Astrophysics , 2010, 1109.2219.

[30]  H. Janka,et al.  Neutrino signal of electron-capture supernovae from core collapse to cooling , 2010 .

[31]  L. Roberts,et al.  INTEGRATED NUCLEOSYNTHESIS IN NEUTRINO-DRIVEN WINDS , 2010, 1004.4916.

[32]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[33]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[34]  A. Mezzacappa,et al.  Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations , 2009, 0908.1871.

[35]  E. Berger,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF SHORT GAMMA-RAY BURST HOST GALAXIES: MORPHOLOGIES, OFFSETS, AND LOCAL ENVIRONMENTS , 2009, 0909.1804.

[36]  B. Metzger,et al.  The effects of r-process heating on fallback accretion in compact object mergers , 2009, 0908.0530.

[37]  William H. Lee,et al.  PHASE TRANSITIONS AND He-SYNTHESIS-DRIVEN WINDS IN NEUTRINO COOLED ACCRETION DISKS: PROSPECTS FOR LATE FLARES IN SHORT GAMMA-RAY BURSTS , 2009, 0904.3752.

[38]  Stephan Rosswog,et al.  Astrophysical smooth particle hydrodynamics , 2009, 0903.5075.

[39]  J. Smith,et al.  The path to the enhanced and advanced LIGO gravitational-wave detectors , 2009, 0902.0381.

[40]  E. Ramirez-Ruiz,et al.  TIDAL DISRUPTION AND IGNITION OF WHITE DWARFS BY MODERATELY MASSIVE BLACK HOLES , 2008, 0808.2143.

[41]  B. Metzger,et al.  Neutron-rich freeze-out in viscously spreading accretion discs formed from compact object mergers , 2008, 0810.2535.

[42]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[43]  G. Wasserburg,et al.  Abundances of Sr, Y, and Zr in Metal-Poor Stars and Implications for Chemical Evolution in the Early Galaxy , 2008, 0807.0809.

[44]  C. Ott,et al.  NEUTRINO SIGNATURES AND THE NEUTRINO-DRIVEN WIND IN BINARY NEUTRON STAR MERGERS , 2008, 0806.4380.

[45]  B. Metzger,et al.  Time-dependent models of accretion discs formed from compact object mergers , 2008, 0805.4415.

[46]  Z. Etienne,et al.  General relativistic simulations of magnetized binary neutron star mergers , 2008, 0803.4193.

[47]  M. Ruffert,et al.  r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole-Neutron Star Mergers , 2008, 0803.1785.

[48]  F. Thielemann,et al.  The r-Process in the region of transuranium elements and the contribution of fission products to the nucleosynthesis of nuclei with A ≤ 130 , 2008 .

[49]  C. Palenzuela,et al.  Magnetized neutron-star mergers and gravitational-wave signals. , 2008, Physical review letters.

[50]  Enrico Ramirez-Ruiz,et al.  Simulating black hole white dwarf encounters , 2008, Comput. Phys. Commun..

[51]  T. Beers,et al.  Nucleosynthesis in the Early Galaxy , 2007, 0709.0417.

[52]  Daniel J. Price,et al.  magma: a three-dimensional, Lagrangian magnetohydrodynamics code for merger applications , 2007, 0705.1441.

[53]  G. Wasserburg,et al.  Where, oh where has the r-process gone? , 2007, 0708.1767.

[54]  E. Nakar Short-hard gamma-ray bursts , 2007, astro-ph/0701748.

[55]  L. Scheck,et al.  Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric , 2006, astro-ph/0612582.

[56]  William H. Lee,et al.  The progenitors of short gamma-ray bursts , 2006, astro-ph/0701874.

[57]  Daniel J. Price,et al.  Producing Ultrastrong Magnetic Fields in Neutron Star Mergers , 2006, Science.

[58]  S. Kulkarni,et al.  Modeling Supernova-like Explosions Associated with Gamma-ray Bursts with Short Durations , 2005, astro-ph/0510256.

[59]  S. Rosswog,et al.  Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios: Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients , 2005, astro-ph/0508138.

[60]  T. Beers,et al.  Hubble Space Telescope Observations of Heavy Elements in Metal-Poor Galactic Halo Stars , 2005 .

[61]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[62]  Melvyn B. Davies,et al.  High-resolution calculations of merging neutron stars - III. Gamma-ray bursts , 2003, astro-ph/0306418.

[63]  Enrico Ramirez-Ruiz,et al.  On the diversity of short gamma‐ray bursts , 2003 .

[64]  S. Rosswog,et al.  High‐resolution calculations of merging neutron stars – II. Neutrino emission , 2003 .

[65]  Stephan RosswogEnrico Ramirez-Ruiz Jets, winds and bursts from coalescing neutron stars , 2002, astro-ph/0207576.

[66]  M. B. Davies,et al.  High-resolution calculations of merging neutron stars - I. Model description and hydrodynamic evolution , 2001, astro-ph/0110180.

[67]  S. Djorgovski,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[68]  F. Douglas Swesty,et al.  The Accuracy, Consistency, and Speed of an Electron-Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy , 2000 .

[69]  S. Rosswog,et al.  r-Process in Neutron Star Mergers , 1999, The Astrophysical journal.

[70]  Chris L. Fryer,et al.  To be submitted to The Astrophysical Journal Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts , 1999 .

[71]  H. Toki,et al.  Relativistic equation of state of nuclear matter for supernova explosion , 1998 .

[72]  Bohdan Paczy'nski,et al.  Transient Events from Neutron Star Mergers , 1998, astro-ph/9807272.

[73]  Hong Shen,et al.  Relativistic equation of state of nuclear matter for supernova and neutron star , 1998 .

[74]  S. Woosley,et al.  Nucleosynthesis in Neutrino-Driven Winds. I. The Physical Conditions , 1996, astro-ph/9611094.

[75]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[76]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[77]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[78]  T. Piran,et al.  Neutron Star and Black Hole Binaries in the Galaxy , 1991 .

[79]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[80]  S. Shapiro,et al.  Neutrino-driven winds from young, hot neutron stars , 1986 .

[81]  J. Lattimer,et al.  The decompression of cold neutron star matter , 1977 .

[82]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[83]  I. McLure Classical and Quantum , 1971 .