OBSERVATIONS AT THE MAGNETOPAUSE AND IN THE AURORAL IONOSPHERE OF MOMENTUM TRANSFER FROM THE SOLAR WIND

[1]  T. Sanderson,et al.  ISEE 3 observations during the CDAW 8 intervals: Case studies of the distant geomagnetic tail covering a wide range of geomagnetic activity , 1989 .

[2]  M. Freeman,et al.  Recent ionospheric observations relating to solar-wind-magnetosphere coupling , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  M. Freeman,et al.  Pressure-driven magnetopause motions and attendant response on the ground , 1989 .

[4]  K. Glassmeier,et al.  Ground-based and satellite observations of traveling magnetospheric convection twin vortices , 1989 .

[5]  M. Lockwood,et al.  The effect of rapid changes in ionospheric flow on velocity vectors deduced from radar beam-swinging experiments , 1989 .

[6]  M. Lockwood,et al.  Response time of the high-latitude dayside ionosphere to sudden changes in the north-south component of the IMF , 1988 .

[7]  M. Lockwood,et al.  Ion flows and heating at a contracting polar-cap boundary , 1988 .

[8]  M. Lockwood,et al.  Ionospheric ion upwelling in the wake of flux transfer events at the dayside magnetopause , 1988 .

[9]  Charles J. Farrugia,et al.  What are flux transfer events , 1988 .

[10]  M. Lockwood,et al.  The dependence of high-latitude dayside ionospheric flows on the North-South component of the IMF: a high time resolution correlation analysis using EISCAT polar and AMPTE UKS and IRM data , 1988 .

[11]  M. Freeman,et al.  The effect of magnetospheric erosion on mid- and high-latitude ionospheric flows , 1988 .

[12]  C. Clauer,et al.  High‐latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation , 1988 .

[13]  M. Lockwood,et al.  Flow in the high latitude ionosphere: measurements at 15s resolution made using the EISCAT ‘Polar’ experiment , 1988 .

[14]  C. R. Clauer,et al.  Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind , 1988 .

[15]  R. P. Lepping,et al.  Response of the auroral oval precipitation and magnetospheric convection to changes in the interplanetary magnetic field , 1987 .

[16]  R. Heelis,et al.  Ionospheric convection signatures and magnetic field topology , 1987 .

[17]  C. Clauer,et al.  Modeled ground magnetic signatures of flux transfer events , 1987 .

[18]  L. V. Medford,et al.  Ionosphere and ground‐based response to field‐aligned currents near the magnetospheric cusp regions , 1987 .

[19]  David J. Southwood,et al.  The ionospheric signature of flux transfer events , 1987 .

[20]  Wolfgang Baumjohann,et al.  The magnetopause for large magnetic shear: AMPTE/IRM observations , 1986 .

[21]  M. Lockwood,et al.  EISCAT observations of bursts of rapid flow in the high latitude dayside ionosphere , 1986 .

[22]  M. Lockwood,et al.  A survey of simultaneous observations of the high-latitude ionosphere and interplanetary magnetic field with EISCAT and AMPTE-UKS , 1986 .

[23]  F. Mozer Reply [to “Comment on “Electric field evidence on the viscous interaction at the magnetopause””] , 1986 .

[24]  R. L. McPherron,et al.  A quantitative empirical model of the magnetospheric flux transfer process , 1986 .

[25]  W. Heikkila Comment on electric field evidence on the viscous interaction at the magnetopause, by F. S. Mozer , 1986 .

[26]  H. Rishbeth,et al.  Ionospheric response to changes in the interplanetary magnetic field observed by EISCAT and AMPTE–UKS , 1985, Nature.

[27]  K. Glassmeier,et al.  Observations of a possible ground signature of flux transfer events , 1985 .

[28]  R. W. Spiro,et al.  Comparison of polar cap potential drops estimated from solar wind and ground magnetometer data: CDAW 6 , 1985 .

[29]  S. Cowley Solar wind control of magnetospheric convection , 1984 .

[30]  Stanley W. H. Cowley,et al.  Initial EISCAT observations of plasma convection at invariant latitudes 70°–77° , 1984 .

[31]  F. Mozer Electric field evidence on the viscous interaction at the magnetopause , 1984 .

[32]  F. Mozer,et al.  Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection , 1983 .

[33]  W. Heikkila Inductive electric field at the magnetopause , 1982 .

[34]  Christopher T. Russell,et al.  Initial ISEE magnetometer results - Magnetopause observations , 1978 .

[35]  J. Slavin,et al.  Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere , 1978 .

[36]  A. Nishida Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations , 1968 .

[37]  M. Lockwood,et al.  June 1987 GISMOS experiment: Preliminary report on high time resolution, multi-radar measurements , 1989 .

[38]  A. Egeland,et al.  Impulsive Pi bursts associated with poleward moving auroras near the polar cusp , 1988 .

[39]  J. Holtet,et al.  Dayside Auroral Activity and Related Magnetic Impulses in the Polar Cusp Region , 1988 .

[40]  R. Elphinstone,et al.  Correlative studies using the Viking imagery , 1988 .

[41]  C. Clauer,et al.  Observations of ionospheric convection vortices: Signatures of momentum transfer , 1988 .

[42]  M. Lockwood,et al.  Low-energy ion outflows from the ionosphere during a major polar cap expansion - Evidence for equatorward motion of inverted-V structures , 1986 .

[43]  Stanley W. H. Cowley,et al.  The impact of recent observations on theoretical understanding of solar wind-magnetosphere interactions. , 1986 .

[44]  M. Lockwood,et al.  Eastward propagation of a plasma convection enhancement following a southward turning of the interplanetary magnetic field , 1986 .

[45]  J. Luhmann,et al.  Solar Wind Control of the Polar CAP Voltage , 1986 .

[46]  G. Siscoe,et al.  Polar cap inflation and deflation , 1985 .