Hysteresis in organic-inorganic hybrid perovskite solar cells

Abstract Organic-inorganic hybrid perovskite solar cells (HPSCs) are considered to be the most rapidly developed photovoltaic technology ever till date, portraying promising potential to replace the traditional silicon photovoltaics. In spite of such impressive growth, this technology is inundated with numerous challenges impeding the progress towards commercial viability. It is mainly due to the fact that the advancements in terms of performance efficiency were not equally matched with the fundamental understanding of inherent electronic and physio-chemical properties, modulating the photovoltaic parameters of the devices. Anomalous hysteresis observed in the current-voltage response of HPSCs is one of such major elusive issues prevalent in perovskite photovoltaics. Such hysteresis phenomenon could lead to erroneous estimation of the solar cell device efficiency, thereby its reliability during actual performance becomes questionable; serving as a serious obstacle for progress from both research as well as commercialization perspective. Hence, a detailed understanding of the origin of hysteresis and its associated mechanisms are highly indispensable. Though numerous theories have been proposed to elucidate the underlying causes of hysteresis, its origin is a highly debated topic till date and the most convincing answer is yet to be unraveled. The presented review takes an opportunity to elaborate various governing mechanisms or origins affecting the hysteresis phenomenon from a comprehensive yet insightful standpoint. This report also provides a concise synthesis of intricate interdependencies among the factors influencing hysteresis and highlights potential research strategies to develop hysteresis-free devices; rendering possible pathways to facilitate the viable commercialization of perovskite solar cells.

[1]  Kai Zhu,et al.  Interface band structure engineering by ferroelectric polarization in perovskite solar cells , 2015 .

[2]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[3]  Fan Zheng,et al.  Material Innovation in Advancing Organometal Halide Perovskite Functionality. , 2015, The journal of physical chemistry letters.

[4]  Dongmei Li,et al.  Interfaces in perovskite solar cells. , 2015, Small.

[5]  Chulho Kim,et al.  Electrode Polarization of Glasses , 1976 .

[6]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[7]  Aron Walsh,et al.  The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells , 2015, Nature Communications.

[8]  R. Herberholz,et al.  Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions , 1996 .

[9]  O. Knop,et al.  Cation rotation in methylammonium lead halides , 1985 .

[10]  Michael F Toney,et al.  Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges , 2015, Advanced materials.

[11]  Qingfeng Dong,et al.  Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond? , 2015 .

[12]  Fujun Zhang,et al.  Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites , 2015 .

[13]  Aram Amassian,et al.  Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells. , 2015, Nanoscale.

[14]  Kai Zhu,et al.  Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. , 2016, Chemical Society reviews.

[15]  Alex K.-Y. Jen,et al.  Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin‐Film Solar Cells , 2015 .

[16]  Aslihan Babayigit,et al.  Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio , 2016, Scientific Reports.

[17]  Luping Yu,et al.  Recent Advances in Bulk Heterojunction Polymer Solar Cells. , 2015, Chemical reviews.

[18]  Emilio Palomares,et al.  Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO₂: Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis. , 2015, Journal of the American Chemical Society.

[19]  Xingshu Sun,et al.  A Physics-Based Analytical Model for Perovskite Solar Cells , 2015, IEEE Journal of Photovoltaics.

[20]  Shi-Joon Sung,et al.  Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode , 2015 .

[21]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[22]  David Cahen,et al.  Perovskite Solar Cells: Do We Know What We Do Not Know? , 2015, The journal of physical chemistry letters.

[23]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[24]  Roberto Dovesi,et al.  Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case of KNbO 3 , 1997 .

[25]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[26]  Yoshihiro Furukawa,et al.  Chloride ion conductor CH3NH3GeCl3 studied by Rietveld analysis of X-ray diffraction and 35Cl NMR , 1995 .

[27]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[28]  Juan Bisquert,et al.  Temperature Effects on the Photovoltaic Performance of Planar Structure Perovskite Solar Cells , 2015 .

[29]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[30]  Friedrich Kremer,et al.  Electrode polarization and charge transport at solid interfaces , 2009 .

[31]  Gaigong Zhang,et al.  Experimental and theoretical studies of donor-acceptor scintillation from PbI2 , 2013 .

[32]  Mario Caironi,et al.  Ion Migration and the Role of Preconditioning Cycles in the Stabilization of the J–V Characteristics of Inverted Hybrid Perovskite Solar Cells , 2016 .

[33]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[34]  Aron Walsh,et al.  Ferroelectric materials for solar energy conversion: photoferroics revisited , 2014, 1412.6929.

[35]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[36]  Kai Zhu,et al.  Ferroelectric solar cells based on inorganic-organic hybrid perovskites , 2015 .

[37]  Peidong Yang,et al.  Organic-inorganic perovskites: Lower threshold for nanowire lasers. , 2015, Nature materials.

[38]  Tsutomu Miyasaka,et al.  Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[39]  Konrad Wojciechowski,et al.  Mapping Electric Field‐Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films , 2015 .

[40]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[41]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[42]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[43]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[44]  John B. Goodenough,et al.  Electronic and ionic transport properties and other physical aspects of perovskites , 2004 .

[45]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[46]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[47]  Andrei Manolescu,et al.  Collective Behavior of Molecular Dipoles in CH3NH3PbI3 , 2015 .

[48]  Mohammad Khaja Nazeeruddin,et al.  Methylammonium lead triiodide perovskite solar cells: A new paradigm in photovoltaics , 2015 .

[49]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[50]  Alison B. Walker,et al.  Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy , 2015 .

[51]  Wei Zhang,et al.  Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells , 2015, Nature Communications.

[52]  A. Zunger,et al.  Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors , 2005, cond-mat/0503018.

[53]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[54]  Bin Hu,et al.  Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells , 2015 .

[55]  Nripan Mathews,et al.  Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. , 2015, Nano letters.

[56]  Juan Bisquert,et al.  Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[57]  Takuya Masuda,et al.  Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method , 2015 .

[58]  Oleksandr Voznyy,et al.  Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime , 2014, Nature Communications.

[59]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[60]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[61]  Aron Walsh,et al.  Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites** , 2015, Angewandte Chemie.

[62]  Dane W. deQuilettes,et al.  Zr Incorporation into TiO2 Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes. , 2015, The journal of physical chemistry letters.

[63]  John Wang,et al.  Ferroelectricity of CH3NH3PbI3 Perovskite. , 2015, The journal of physical chemistry letters.

[64]  Huibin Lu,et al.  Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films , 2011 .

[65]  Qi Chen,et al.  The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. , 2015, Physical chemistry chemical physics : PCCP.

[66]  Rainer Waser,et al.  dc Electrical Degradation of Perovskite‐Type Titanates: III, A Model of the Mechanism , 1990 .

[67]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[68]  David B. Mitzi,et al.  Synthesis, Structure, and Properties of Organic‐Inorganic Perovskites and Related Materials , 2007 .

[69]  Olle Inganäs,et al.  Simple experimental test to distinguish extraction and injection barriers at the electrodes of (organic) solar cells with S-shaped current–voltage characteristics , 2013 .

[70]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[71]  Edward H. Sargent,et al.  A two-step route to planar perovskite cells exhibiting reduced hysteresis , 2015 .

[72]  S. V. Suryanarayana,et al.  Transport properties of the perovskite-type halides , 1991 .

[73]  Hyun Suk Jung,et al.  Screening effect on photovoltaic performance in ferroelectric CH3NH3PbI3 perovskite thin films , 2015 .

[74]  C. R. Mariappan,et al.  Electrode polarization in glassy electrolytes: Large interfacial capacitance values and indication for pseudocapacitive charge storage , 2009, 0904.3856.

[75]  Hongxia Wang,et al.  Progress in research on the stability of organometal perovskite solar cells , 2016 .

[76]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[77]  Steffen Meyer,et al.  Copper(I) Iodide as Hole‐Conductor in Planar Perovskite Solar Cells: Probing the Origin of J–V Hysteresis , 2015 .

[78]  J W Mellor,et al.  A comprehensive treatise on inorganic and theoretical chemistry vol.VIII N, Cl , 1922 .

[79]  Wai Kin Chan,et al.  Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? , 2016 .

[80]  Titilayo A. Kuku,et al.  Ionic transport and galvanic cell discharge characteristics of CuPbI3 thin films , 1998 .

[81]  Tae-Woo Lee,et al.  Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate , 2015, Advanced materials.

[82]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[83]  Nripan Mathews,et al.  Charge Accumulation and Hysteresis in Perovskite‐Based Solar Cells: An Electro‐Optical Analysis , 2015 .

[84]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[85]  Kazuo Fueki,et al.  Ionic conduction of the perovskite-type halides , 1983 .

[86]  Nam-Gyu Park,et al.  Stability Issues on Perovskite Solar Cells , 2015 .

[87]  S. P. Mitoff,et al.  Electrode Polarization of Ionic Conductors , 1972 .

[88]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[89]  Chang Liu,et al.  Efficient Perovskite Hybrid Solar Cells via Ionomer Interfacial Engineering , 2015 .

[90]  Joop Schoonman,et al.  Organic–inorganic lead halide perovskite solar cell materials: A possible stability problem , 2015 .

[91]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[92]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[93]  A. Freeman,et al.  Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites , 2014, Proceedings of the National Academy of Sciences.

[94]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[95]  Arie Zaban,et al.  Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. , 2014, The journal of physical chemistry letters.

[96]  Sergei V. Kalinin,et al.  Local potential and polarization screening on ferroelectric surfaces , 2001 .

[97]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[98]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[99]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[100]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[101]  Yoshihiro Furukawa,et al.  Phase Transition and Electric Conductivity of ASnCl3 (A = Cs and CH3NH3). , 1998 .

[102]  Juan Bisquert,et al.  Mobile cation concentration in ionically conducting glasses calculated by means of Mott–Schottky capacitance–voltage characteristics , 2003 .

[103]  Fan Zheng,et al.  Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[104]  Mao-Hua Du,et al.  Efficient carrier transport in halide perovskites: theoretical perspectives , 2014 .

[105]  Oleksandr Voznyy,et al.  Materials processing routes to trap-free halide perovskites. , 2014, Nano letters.

[106]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[107]  Bo Chen,et al.  Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[108]  Haitao Huang,et al.  Solar energy: Ferroelectric photovoltaics , 2010 .

[109]  Lioz Etgar,et al.  Impact of Antisolvent Treatment on Carrier Density in Efficient Hole-Conductor-Free Perovskite-Based Solar Cells , 2016 .

[110]  Michael D. McGehee,et al.  Perovskite solar cells: Continuing to soar. , 2014, Nature materials.

[111]  Juan Bisquert,et al.  Cooperative kinetics of depolarization in CH3NH3PbI3 perovskite solar cells , 2015 .

[112]  Hiroshi Suga,et al.  Dielectric study of CH3NH3PbX3 (X = Cl, Br, I) , 1992 .

[113]  Xiaohao Yang,et al.  Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. , 2014, Nano letters.

[114]  Keitaro Sodeyama,et al.  First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. , 2015, Journal of the American Chemical Society.

[115]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[116]  Henk J. Bolink,et al.  Perovskite solar cells join the major league , 2015, Science.

[117]  Heng Li,et al.  Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[118]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[119]  Thomas Pfadler,et al.  Erroneous efficiency reports harm organic solar cell research , 2014, Nature Photonics.

[120]  Leeor Kronik,et al.  Theory of Hydrogen Migration in Organic–Inorganic Halide Perovskites , 2015, Angewandte Chemie.

[121]  Andrew R. Kitahara,et al.  Defect density and dielectric constant in perovskite solar cells , 2014 .

[122]  Carl Renz,et al.  Zur Photochemie der Bleiverbindungen , 1921 .

[123]  Craig A. J. Fisher,et al.  Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. , 2010, Chemical Society reviews.

[124]  Hyun Suk Jung,et al.  Ferroelectric Polarization in CH3NH3PbI3 Perovskite. , 2015, The journal of physical chemistry letters.

[125]  Fujun Zhang,et al.  Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[126]  Koichi Yamashita,et al.  Zero-dipole molecular organic cations in mixed organic–inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current–voltage curve measurements , 2015, Nanotechnology.

[127]  Feng Liu,et al.  Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. , 2015, Journal of the American Chemical Society.

[128]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[129]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[130]  Yongbo Yuan,et al.  Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells , 2015 .

[131]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[132]  Juan Bisquert,et al.  Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[133]  Henk J. Bolink,et al.  Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis , 2015 .

[134]  Tomas Leijtens,et al.  Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. , 2014, ACS nano.

[135]  Davor Pavuna,et al.  Tuning of the Thermoelectric Figure of Merit of CH3NH3MI3 (M=Pb,Sn) Photovoltaic Perovskites , 2015, 1505.07389.

[136]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[137]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[138]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[139]  Giulia Galli,et al.  Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH3NH3AI3 (A = Pb and Sn) , 2014 .

[140]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[141]  Trystan Watson,et al.  Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic–Inorganic Lead Halide Perovskite Solar Cells , 2015 .

[142]  Karl Leo,et al.  Perovskite photovoltaics: Signs of stability. , 2015, Nature nanotechnology.

[143]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[144]  Prashant V Kamat,et al.  Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. , 2015, The journal of physical chemistry letters.

[145]  Juan Bisquert,et al.  Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells , 2003 .

[146]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[147]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[148]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[149]  Juan Bisquert,et al.  Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. , 2015, The journal of physical chemistry letters.

[150]  Wai Kin Chan,et al.  Perovskite Solar Cells: Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? (Adv. Energy Mater. 7/2016) , 2016 .