Photonic crystals and the real world of optical telecommunications

The last decade has seen a tremendous interest in the field of photonic crystals. After a review of the basic properties of ideal two-dimensional photonic crystals, we describe the recent advances that lead to consider them as good candidates for a powerful control of light in future miniature photonic devices. The choice of devices is oriented in view of possible applications to high-density telecommunication optical circuits. We first mainly focus on integrated optics with 2D photonic crystals that are the most fascinating in terms of miniaturisation with existing technologies. We discuss the critical issues for minimising the propagation losses in photonic-crystal waveguides as well as the interest of high-Q cavities and the last advances in building-blocks for ultra-compact photonic integrated circuits. We also show the recent advances in microstructured fibres, that are certainly promised to be the most immediate application of photonic crystals in the real world of optical communications. Finally, we present new technologies and architectures that open the way to three-dimensional structures with the ultimate goal of a full control of light. This is followed by conclusive remarks on what photonic crystals can bring to the field of telecommunications.RésuméLa dernière décennie a été marquée d’un intérêt sans précédent pour le domaine des cristaux photoniques. Après une brève revue des propriétés de base des cristaux photoniques bidimensionnels idéaux, nous décrivons les avancées récentes qui amènent à les considérer comme de bons candidats pour un contrôle efficace de la lumière dans les futurs dispositifs photoniques miniatures. Le choix des dispositifs est orienté en vue d’applications possibles aux circuits optiques à haute densité. En premier lieu, nous nous focalisons principalement sur l’optique intégrée avec les cristaux photoniques bidimensionnels qui sont les plus fascinants en termes de miniaturisation à partir des technologies existantes. Nous discutons en détail les points critiques pour minimiser les pertes de propagation dans les guides d’onde à cristal photonique, de même que l’intérêt des cavités à Q élevé et les dernières avancées dans la réalisation des briques de base pour des circuits photoniques intégrés ultra-compacts. Nous montrons aussi les récentes avancées dans les fibres microstructurées qui sont certainement promises à être l’application la plus immédiate des cristaux photoniques dans le monde réel des télécommunications optiques. Finalement, nous présentons des nouvelles techniques et des nouvelles architectures qui ouvrent la voie aux structures tridimensionnelles dont le but ultime est le contrôle total de la lumière. Ceci est suivi de remarques de conclusion quant aux apports possibles des cristaux photoniques au domaine des télécommunications optiques.

[1]  Nikolaos Stefanou,et al.  Impurity bands in photonic insulators , 1998 .

[2]  Goro Sasaki,et al.  Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure , 1999 .

[3]  Shanhui Fan,et al.  Air‐bridge microcavities , 1995 .

[4]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[5]  Henri Benisty,et al.  Performance of waveguide-based two-dimensional photonic-crystal mirrors studied with Fabry-Perot resonators , 2001 .

[6]  Thomas F. Krauss,et al.  Improved 60/spl deg/ bend transmission of submicron-width waveguides defined in two-dimensional photonic crystals , 2002 .

[7]  Henri Benisty,et al.  Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design , 2002 .

[8]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[9]  K. Asakawa,et al.  Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal. , 2001, Physical review letters.

[10]  Shinpei Ogawa,et al.  Semiconductor three-dimensional and two-dimensional photonic crystals and devices , 2002 .

[11]  Henri Benisty,et al.  Finely resolved transmission spectra and band structure of two dimensional photonic crystals using emission from Inas quantum dots , 1999 .

[12]  Noritsugu Yamamoto,et al.  Optical properties of three-dimensional photonic crystals based on III–V semiconductors at infrared to near-infrared wavelengths , 1999 .

[13]  Nigel P. Johnson,et al.  ENHANCEMENT OF THE PHOTONIC GAP OF OPAL-BASED THREE-DIMENSIONAL GRATINGS , 1997 .

[14]  A. Sentenac,et al.  Dipole radiation into grating structures , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Kurt Busch,et al.  Attenuation of optical transmission within the band gap of thin two-dimensional macroporous silicon photonic crystals , 1999 .

[16]  Christopher A. White,et al.  Epitaxial Growth of High Dielectric Contrast Three‐Dimensional Photonic Crystals , 2001 .

[17]  P. Crozat,et al.  Experimental demonstration of complete photonic band gap in graphite structure , 1997 .

[18]  J. R. Wendt,et al.  Three-dimensional control of light in a two-dimensional photonic crystal slab , 2022 .

[19]  A. Scherer,et al.  Design and fabrication of silicon photonic crystal optical waveguides , 2000, Journal of Lightwave Technology.

[20]  R. M. Stevenson,et al.  Resonant coupling of near-infrared radiation to photonic band structure waveguides , 1999 .

[21]  D. Pozar Microwave Engineering , 1990 .

[22]  Kurt Busch,et al.  Macroporous silicon with a complete two‐dimensional photonic band gap centered at 5 μm , 1996 .

[23]  Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared , 1998 .

[24]  Henri Benisty,et al.  Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals , 2002 .

[25]  J. Fleming,et al.  Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 microm. , 1999, Optics letters.

[26]  Jeff F. Young,et al.  Mode matching for second-harmonic generation in photonic crystal waveguides , 2002 .

[27]  J. Joannopoulos,et al.  High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.

[28]  A. Chelnokov,et al.  Macroporous silicon photonic crystals at 1.55 [micro sign]m , 1999 .

[29]  Masaya Notomi,et al.  Superprism Phenomena in Photonic Crystals , 1998 .

[30]  A. Tomita,et al.  Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide , 2000 .

[31]  Masaya Notomi,et al.  Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap , 2000 .

[32]  Henri Benisty,et al.  Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate , 2000 .

[33]  Alfred Forchel,et al.  Single-mode operation of coupled-cavity lasers based on two-dimensional photonic crystals , 2001 .

[34]  R Orobtchouk,et al.  Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. , 2003, Optics letters.

[35]  Thomas P. Pearsall,et al.  Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides , 2002 .

[36]  Steven G. Johnson,et al.  Demonstration of highly efficient waveguiding in a photonic crystal slab at x=1.5{micro}m wavelengths , 2000 .

[37]  L C Kimerling,et al.  Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction. , 2001, Optics letters.

[38]  A. Birner,et al.  Macroporous Silicon: A Two‐Dimensional Photonic Bandgap Material Suitable for the Near‐Infrared Spectral Range , 1998 .

[39]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[40]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[41]  Thomas F. Krauss,et al.  Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths , 1996, Nature.

[42]  Steven G. Johnson,et al.  Quantitative Analysis of Bending Efficiency in Photonic-Crystal Waveguide Bends at x=1.55{micro}m Wavelengths , 2001 .

[43]  E. Costard,et al.  Fabrication of a 2D photonic bandgap by a holographic method , 1997 .

[44]  Sakoda Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices. , 1995, Physical review. B, Condensed matter.

[45]  Henri Benisty,et al.  Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals , 2002 .

[46]  S. Noda,et al.  Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design , 2001, Science.

[47]  A. Chelnokov,et al.  Lateral confinement in macroporous silicon photonic crystal waveguides , 2002 .

[48]  Henri Benisty,et al.  Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering , 2001 .

[49]  Christoph Becher,et al.  Photonic crystal microcavities with self-assembled InAs quantum dots as active emitters , 2001 .

[50]  K Ohtaka,et al.  Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. , 1999, Optics express.

[51]  J.S. Roberts,et al.  Edge-emitting semiconductor microlasers with ultrashort-cavity and dry-etched high-reflectivity photonic microstructure mirrors , 2001, IEEE Photonics Technology Letters.

[52]  Henri Benisty,et al.  Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal , 2001 .

[53]  Gérard Tayeb,et al.  Enhanced emission with angular confinement from photonic crystals , 2002 .

[54]  Jean-Michel Lourtioz,et al.  Fabrication of 2-D and 3-D silicon photonic crystals by deep etching , 2002 .

[55]  Toshihiko Baba,et al.  Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate , 2002 .

[56]  Leung,et al.  Photonic band structure: The face-centered-cubic case employing nonspherical atoms. , 1991, Physical review letters.

[57]  M. Kamp,et al.  Transmission spectroscopy of photonic crystal based waveguides with resonant cavities , 2002 .

[58]  Christian Seassal,et al.  Characterisation of 2D photonic crystals cavities on InP membranes , 2001 .

[59]  Y. Arakawa,et al.  Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal , 1996 .

[60]  Henri Benisty,et al.  Out-of-plane losses of two-dimensional photonic crystals waveguides: Electromagnetic analysis , 2001 .

[61]  A. Talneau,et al.  Quantitative measurement of low propagation losses at 1.55 mum on planar photonic crystal waveguides. , 2001, Optics letters.

[62]  A. Scherer,et al.  Waveguiding in Planar Photonic Crystals , 2000 .

[63]  Jean-Michel Lourtioz,et al.  Two-dimensional photonic crystals in macroporous silicon: from mid-infrared (10 /spl mu/m) to telecommunication wavelengths (1.3-1.5 /spl mu/m) , 1999 .

[64]  A. Birner,et al.  Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides. , 2000, Optics letters.

[65]  Eli Yablonovitch,et al.  Lithographic Band Gap Tuning in Photonic Band Gap Crystals , 1996 .

[66]  Tony Zijlstra,et al.  Fabrication of two-dimensional photonic crystal waveguides for 1.5 μm in silicon by deep anisotropic dry etching , 1999 .

[67]  Omar Qasaimeh,et al.  Electroabsorption and electrooptic effect in SiGe-Si quantum wells: realization of low-voltage optical modulators , 1997 .

[68]  Chan,et al.  Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient. , 1993, Physical review. B, Condensed matter.

[69]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[70]  J. Joannopoulos,et al.  High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals , 1997 .

[71]  Yong-Hee Lee,et al.  Nondegenerate monopole-mode two-dimensional photonic band gap laser , 2001 .

[72]  H. Föll,et al.  Formation Mechanism and Properties of Electrochemically Etched Trenches in n‐Type Silicon , 1990 .

[73]  Jelena Vucković,et al.  Design of photonic crystal microcavities for cavity QED. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  K. Asakawa,et al.  Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs. , 2002, Optics letters.

[75]  Xavier Letartre,et al.  Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes , 2001 .

[76]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[77]  Ingrid Moerman,et al.  Efficient photonic crystal Y-junctions , 2003 .

[78]  Reinhard März,et al.  Integrated Optics: Design and Modeling , 1995 .

[79]  Density of states of hole-doped manganites: A scanning-tunneling-microscopy/spectroscopy study , 1998, cond-mat/9806084.

[80]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[81]  Johann Peter Reithmaier,et al.  Bent laser cavity based on 2D photonic crystal waveguide , 2000 .

[82]  Robertson,et al.  Measurement of photonic band structure in a two-dimensional periodic dielectric array. , 1992, Physical review letters.

[83]  Sub-micrometre dielectric and metallic yablonovite structures fabricated from resist templates , 2002 .

[84]  M. Kamp,et al.  Optical study of two-dimensional InP-based photonic crystals by internal light source technique , 2002 .

[85]  C. Soukoulis,et al.  Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths. , 2002, Optics letters.

[86]  Che Ting Chan,et al.  Photonic band gaps in three dimensions: New layer-by-layer periodic structures , 1994 .

[87]  T. Krauss,et al.  An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers , 2002 .

[88]  Henri Benisty,et al.  Quantitative measurement of transmission, reflection and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths , 1997 .

[89]  Amnon Yariv,et al.  Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths , 1999 .

[90]  Henri Benisty,et al.  High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals , 2002 .

[91]  Kurt Busch,et al.  Silicon‐Based Photonic Crystals , 2001 .

[92]  Henri Benisty,et al.  Modal analysis of optical guides with two‐dimensional photonic band‐gap boundaries , 1996 .

[93]  R. Sorge,et al.  Impact of low carbon concentrations on the electrical properties of highly boron doped SiGe layers , 1997 .

[94]  Suzanne Laval Optical interconnects: the challenge , 2000 .

[95]  Axel Scherer,et al.  High Quality Two-Dimensional Photonic Crystal Slab Cavities , 2001 .

[96]  Amnon Yariv,et al.  Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities , 1998 .

[97]  R. Alferness,et al.  Guided-wave optoelectronics , 1988 .

[98]  Susumu Noda,et al.  Trapping and emission of photons by a single defect in a photonic bandgap structure , 2000, Nature.

[99]  Xavier Letartre,et al.  Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-V suspended membranes , 1999 .

[100]  Alexei Chelnokov,et al.  Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon , 2000 .

[101]  Makoto Okano,et al.  Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs , 2002 .

[102]  Toshihiko Baba,et al.  Observation of light propagation in photonic crystal optical waveguides with bends , 1999 .

[103]  Axel Scherer,et al.  Defect Modes of a Two-Dimensional Photonic Crystal in an Optically Thin Dielectric Slab , 1999 .

[104]  Henri Benisty,et al.  Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals , 1997 .

[105]  Christian Seassal,et al.  Tunable microcavity based on InP-air Bragg mirrors , 1999 .

[106]  Anne Talneau,et al.  Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm , 2002 .

[107]  Masaya Notomi,et al.  Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap , 2000 .

[108]  D. Whittaker,et al.  Scattering-matrix treatment of patterned multilayer photonic structures , 1999 .

[109]  Thomas F. Krauss,et al.  Optical and confinement properties of two-dimensional photonic crystals , 1999 .

[110]  M. Notomi,et al.  Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs , 2002 .

[111]  Henri Benisty,et al.  Radiation losses in planar photonic crystals: two- dimensional representation of hole depth and shape by an imaginary dielectric constant , 2003 .

[112]  Min Qiu,et al.  Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals , 2002 .

[113]  Yves Campidelli,et al.  Electroluminescence of Ge'Si self-assembled quantum dots grown by chemical vapor deposition , 2000 .

[114]  Chan,et al.  Existence of a photonic gap in periodic dielectric structures. , 1990, Physical review letters.

[115]  Anne Sentenac,et al.  Highly directive light sources using two-dimensional photonic crystal slabs , 2001 .

[116]  Henri Benisty,et al.  Near-infrared microcavities confined by two-dimensional photonic bandgap crystals , 1999 .

[117]  Henri Benisty,et al.  Coupled guide and cavity in a two-dimensional photonic crystal , 2001 .

[118]  Blanch Arturo Ortigosa Highly birefringent photonic crystal fibres : linear and nonlinear effects , 2002 .

[119]  V. G. Golubev,et al.  Phase transition-governed opal–VO2 photonic crystal , 2001 .

[120]  John D. Joannopoulos,et al.  Existence of a photonic band gap in two dimensions , 1992 .

[121]  Stefano Boscolo,et al.  Numerical analysis of propagation and impedance matching in 2D photonic crystal waveguides with finite length , 2002 .

[122]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[123]  Hiroaki Misawa,et al.  Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin , 1999 .

[124]  Henri Benisty,et al.  High-finesse disk microcavity based on a circular Bragg reflector , 1998 .

[125]  James G. Fleming,et al.  Photonic band-gap microcavities in three dimensions , 1999 .

[126]  Henri Benisty,et al.  Mini stopbands of a one dimensional system: the channel waveguide in a two-dimensional photonic crystal , 2001 .

[127]  Henri Benisty,et al.  Two-mode fringes in planar photonic crystal waveguides with constrictions: a probe that is sensitive to propagation losses , 2002 .

[128]  Henri Benisty,et al.  In-plane microcavity resonators with two-dimensional photonic bandgap mirrors , 1998 .

[129]  T. Krauss,et al.  Directionally dependent confinement in photonic-crystal microcavities , 2000 .

[130]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[131]  James G. Fleming,et al.  Complete three-dimensional photonic bandgap in a simple cubic structure , 2001 .

[132]  Eli Yablonovitch,et al.  Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals , 1999 .

[133]  Axel Scherer,et al.  Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP , 1999 .