Effcient flow simulation on high performance computers

In the last decades, tremendous progress has been made in the area of numerical methods and computer technology. This article gives an introduction to the recent lattice Boltzmann method for simulating the flow of incompressible fluids and shows its application to study the flow in the complex geometry of a randomly packed fixed bed reactor. In addition, general aspects of high performance computing are addressed, e.g. the efficient handling of large amounts of data produced during time-dependent simulations, the performance of recent commodity off-the-shelf (COTS) high performance computers and optimization strategies for them. Finally, the concept of the Federal State of Bavaria for the promotion of high performance techniques is summarized.

[1]  Gary Edward Mueller,et al.  Numerical simulation of packed beds with monosized spheres in cylindrical containers , 1997 .

[2]  Performance Aspects of Lattice Boltzmann Methods for Applications in Chemical Engineering , 2001 .

[3]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Gunther Brenner,et al.  Application of the Lattice Boltzmann CFD Method on HPC Systems to Analyse the Flow in Fixed-Bed Reactors , 2003 .

[5]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[6]  L. Kadanoff Cathedrals and Other Edifices , 1986 .

[7]  Donald Ziegler,et al.  Boundary conditions for lattice Boltzmann simulations , 1993 .

[8]  Florian Huber,et al.  Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation , 2003 .

[9]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[10]  Y. Pomeau,et al.  Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions , 1976 .

[11]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[12]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[13]  Wim J. J. Soppe,et al.  Computer simulation of random packings of hard spheres , 1990 .

[14]  G. Eigenberger,et al.  Fluid flow through catalyst filled tubes , 1997 .

[15]  Franz Durst,et al.  Comparison of cellular automata and finite volume techniques for simulation of incompressible flows in complex geometries , 1999 .

[16]  Numerical Analysis of the Pressure Drop in Porous Media Flow using the Lattice Boltzmann Computational Technique , 2001 .

[17]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[18]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[19]  Thomas Zeiser,et al.  Simulation komplexer fluider Transportvorgänge in der Verfahrenstechnik , 2002 .

[20]  E. M. Tory,et al.  Computer simulation of isotropic, homogeneous, dense random packing of equal spheres , 1981 .

[21]  A. Ecer,et al.  Parallel Computational Fluid Dynamics, '91 , 1992 .

[22]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[23]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[24]  Sharath S. Girimaji,et al.  Scalar Mixing and Chemical Reaction Simulations Using Lattice Boltzmann Method , 2002, Int. J. Comput. Eng. Sci..

[25]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[26]  Manfred Krafczyk,et al.  LARGE-EDDY SIMULATIONS WITH A MULTIPLE-RELAXATION-TIME LBE MODEL , 2003 .

[27]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[28]  R. F. Benenati,et al.  Void fraction distribution in beds of spheres , 1962 .

[29]  Ulrich Rüde,et al.  Optimization and Profiling of the Cache Performance of Parallel Lattice Boltzmann Codes in 2 D and 3 D ∗ , 2003 .

[30]  Takaji Inamuro,et al.  A NON-SLIP BOUNDARY CONDITION FOR LATTICE BOLTZMANN SIMULATIONS , 1995, comp-gas/9508002.

[31]  Bernie D. Shizgal,et al.  Rarefied Gas Dynamics: Theory and Simulations , 1994 .

[32]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[33]  B. Shizgal,et al.  Generalized Lattice-Boltzmann Equations , 1994 .

[34]  L. Luo,et al.  Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .

[35]  Gerhard Wellein,et al.  Optimized Lattice Boltzmann Kernels as Testbeds for Processor Performance , 2004 .

[36]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[37]  F. Durst,et al.  Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata , 2000 .

[38]  Thomas Zeiser,et al.  Analysis of the flow field and pressure drop in fixed-bed reactors with the help of lattice Boltzmann simulations , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  Perspectives of the Lattice Boltzmann Method for Industrial Applications , 2001 .

[40]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.