An efficient quadrilateral element based on improved zigzag theory for dynamic analysis of hybrid plates with electroded piezoelectric actuators and sensors

Abstract An efficient four-node quadrilateral element is developed using a coupled improved zigzag theory for the dynamic analysis of hybrid plates with segmented piezoelectric sensors and actuators. The theory considers a third-order zigzag approximation for inplane displacements, a layerwise quadratic approximation for the electric potential and a layerwise variation of the deflection to account for the piezoelectric transverse normal strain. The conditions on transverse shear stresses at the interfaces and at the top and bottom are satisfied exactly in the presence of electric loading. In a novel concept, the degrees of freedom (dof) corresponding to the quadratic component of the electric potential distribution are associated with the physical nodes and the electric potentials of the electroded piezoelectric surfaces are attached to separate electric nodes. The requirement of C 1 continuity of interpolation functions of the deflection is circumvented by employing an improved discrete Kirchhoff constraint technique. Comparison of the present results for natural frequencies and mode shapes for a variety of bimorph, hybrid composite and sandwich plates, with three-dimensional (3D) analytical and FE solutions, and those of other available elements establishes the superiority of the present element with respect to accuracy, robustness and computational efficiency. The comparison also establishes the superiority of the zigzag theory over the smeared third-order theory having the same number of dof.

[1]  Xu Zhou,et al.  A higher order temperature theory for coupled thermo-piezoelectric-mechanical modeling of smart composites , 2000 .

[2]  S. Kapuria,et al.  Efficient layerwise finite element model for dynamic analysis of laminated piezoelectric beams , 2006 .

[3]  Marco Di Sciuva,et al.  Multilayered anisotropic plate models with continuous interlaminar stresses , 1992 .

[4]  Santosh Kapuria,et al.  An improved discrete Kirchhoff quadrilateral element based on third‐order zigzag theory for static analysis of composite and sandwich plates , 2007 .

[5]  Afzal Suleman,et al.  Modelling and design of adaptive composite structures , 2000 .

[6]  Olivier Polit,et al.  Electric potential approximations for an eight node plate finite element , 2006 .

[7]  C. I. Tseng,et al.  Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach , 1990 .

[8]  Jean-Louis Batoz,et al.  Evaluation of a new quadrilateral thin plate bending element , 1982 .

[9]  Santosh Kapuria,et al.  A coupled zigzag theory for the dynamics of piezoelectric hybrid cross-ply plates , 2005 .

[10]  V. Balamurugan,et al.  Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control , 2001 .

[11]  M. Petyt,et al.  Introduction to Finite Element Vibration Analysis , 2016 .

[12]  Michael Rose,et al.  High‐performance four‐node shell element with piezoelectric coupling for the analysis of smart laminated structures , 2007 .

[13]  A. Suleman,et al.  A Simple Finite Element Formulation for a Laminated Composite Plate with Piezoelectric Layers , 1995 .

[14]  Sudhakar A. Kulkarni,et al.  Finite element modeling of smart plates/shells using higher order shear deformation theory , 2003 .

[15]  J. Z. Zhu,et al.  The finite element method , 1977 .

[16]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[17]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[18]  A. Belegundu,et al.  Introduction to Finite Elements in Engineering , 1990 .

[19]  N. Rogacheva The Theory of Piezoelectric Shells and Plates , 1994 .

[20]  V. B. Venkayya,et al.  Finite element analysis of laminated composite structures containing distributed piezoelectric actuators and sensors , 1995 .

[21]  Dimitris A. Saravanos,et al.  Exact free‐vibration analysis of laminated plates with embedded piezoelectric layers , 1995 .

[22]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[23]  J. Kirkhope,et al.  An improved discrete Kirchhoff quadrilateral thin-plate bending element , 1987 .

[24]  H. F. Tiersten,et al.  Linear Piezoelectric Plate Vibrations , 1969 .

[25]  J. Dias Rodrigues,et al.  Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies , 2006 .

[26]  Fu-Kuo Chang,et al.  Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators , 1992 .

[27]  Santosh Kapuria,et al.  Exact 3D piezoelasticity solution of hybrid cross–ply plates with damping under harmonic electro-mechanical loads , 2005 .

[28]  Santosh Kapuria,et al.  A Coupled Zig-Zag Third-Order Theory for Piezoelectric Hybrid Cross-Ply Plates , 2004 .

[29]  Abdul Hamid Sheikh,et al.  Vibration characteristics of composite/sandwich laminates with piezoelectric layers using a refined hybrid plate model , 2007 .

[30]  Dale A. Hopkins,et al.  Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates , 1997 .

[31]  K. Y. Sze,et al.  Electric Assumptions for Piezoelectric Laminate Analysis , 2004 .

[32]  Maenghyo Cho,et al.  Efficient higher order composite plate theory for general lamination configurations , 1993 .

[33]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[34]  K. Sze,et al.  MODELLING SMART STRUCTURES WITH SEGMENTED PIEZOELECTRIC SENSORS AND ACTUATORS , 2000 .

[35]  L. Yin,et al.  Strain sensing of composite plates subjected to low velocity impact with distributed piezoelectric sensors : A mixed finite element approach , 1997 .

[36]  Santosh Kapuria,et al.  An efficient coupled theory for multilayered beams with embedded piezoelectric sensory and active layers , 2001 .

[37]  Erasmo Carrera,et al.  A unified formulation for finite element analysis of piezoelectric adaptive plates , 2006 .

[38]  C.M.A. Vasques,et al.  Coupled three‐layered analysis of smart piezoelectric beams with different electric boundary conditions , 2005 .

[39]  Dimitris A. Saravanos,et al.  Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks , 2000 .

[40]  D. Saravanos,et al.  Coupled discrete-layer finite elements for laminated piezoelectric platess , 1994 .

[41]  S. Y. Wang,et al.  A finite element model for the static and dynamic analysis of a piezoelectric bimorph , 2004 .

[42]  Michael Krommer,et al.  On the correction of the Bernoulli-Euler beam theory for smart piezoelectric beams , 2001 .

[43]  Jaroslav Mackerle,et al.  Smart materials and structures - a finite element approach - an addendum : a bibliography (1997-2002) (vol 6, pg 293, 1998) , 2003 .