A Hitchhiker's Guide to the Proteasome

Regulated degradation of proteins is essential for viability and is involved in the control of many signal transduction pathways. von Arnim discusses a new model for how substrates destined for degradation by the 26S proteasome may be presented to the proteasome through a physical interaction between the proteasome and a complex consisting of the substrate and a ubiquitin-ligase. The new model suggests that the SCF (Skp1/cullin/F-box) protein complex may physically associate with the proteasome and that this interaction may be regulated by posttranslational modifications, such as phosphorylation or the covalent attachment of the Nedd8 protein, called neddylation. Additionally, other proteins may compete with the SCF complexes for binding to the proteasome and thus present another layer of regulation for controlling substrate targeting for ubiquitin-mediated degradation.

[1]  C. Schwechheimer,et al.  Interactions of the COP9 Signalosome with the E3 Ubiquitin Ligase SCFTIR1 in Mediating Auxin Response , 2001, Science.

[2]  R. Vierstra,et al.  The cellular level of PR500, a protein complex related to the 19S regulatory particle of the proteasome, is regulated in response to stresses in plants. , 2001, Molecular biology of the cell.

[3]  X. Deng,et al.  Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex. , 1999, Journal of molecular biology.

[4]  A. Shevchenko,et al.  Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome , 2001, Science.

[5]  A. Varshavsky,et al.  Physical association of ubiquitin ligases and the 26S proteasome. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Estelle,et al.  Function of the ubiquitin-proteasome pathway in auxin response. , 2000, Trends in biochemical sciences.

[7]  R. Kraft,et al.  A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  D. Xie,et al.  COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. , 1998, Science.

[9]  Andrea C. Carrano,et al.  Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. , 1999, Genes & development.

[10]  J. Yates,et al.  Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. , 2000, Molecular biology of the cell.

[11]  R. Bhalerao,et al.  Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Farràs,et al.  SKP1–SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase , 2001, The EMBO journal.

[13]  Li Chen,et al.  Evidence for an Interaction between Ubiquitin-Conjugating Enzymes and the 26S Proteasome , 2000, Molecular and Cellular Biology.

[14]  Minami Matsui,et al.  The COP9 Complex, a Novel Multisubunit Nuclear Regulator Involved in Light Control of a Plant Developmental Switch , 1996, Cell.

[15]  A. Ciechanover,et al.  Functional Interaction between SEL-10, an F-box Protein, and the Nuclear Form of Activated Notch1 Receptor* , 2001, The Journal of Biological Chemistry.