Computation of scattering resonances for dielectric resonators

In this paper we present a numerical method to compute resonances and resonant modes for 2D electromagnetic scattering at a smooth homogeneous dielectric object in free space. The resonances are found as eigenvalues of a non-linear eigenvalue problem which comes from a formulation as a boundary integral equation and subsequent discretization by a Nystrom approach, for which the integral kernels are regularized by singularity subtraction. The eigenvalues are computed by a predictor-corrector strategy, which provides good initial guesses for an iterative corrector procedure. The resonances can be computed with very high accuracy due to an exponentially decreasing discretization error.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  Gennadi Vainikko,et al.  Periodic Integral and Pseudodifferential Equations with Numerical Approximation , 2001 .

[3]  Boundary integral method for stationary states of two-dimensional quantum systems , 1997, physics/9702022.

[4]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[5]  Yuliy Baryshnikov,et al.  Whispering gallery modes inside asymmetric resonant cavities. , 2004, Physical review letters.

[6]  Rainer Kress,et al.  Transmission problems for the Helmholtz equation , 1978 .

[7]  A. Stone,et al.  Ray and wave chaos in asymmetric resonant optical cavities , 1997, Nature.

[8]  Cho,et al.  High-power directional emission from microlasers with chaotic resonators , 1998, Science.

[9]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[10]  Jan Wiersig Boundary element method for resonances in dielectric microcavities , 2003 .

[11]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[12]  Richart E. Slusher,et al.  Optical Processes in Microcavities , 1993 .

[13]  Salim Meddahi,et al.  Computing Acoustic Waves in an Inhomogeneous Medium of the Plane by a Coupling of Spectral and Finite Elements , 2003, SIAM J. Numer. Anal..

[14]  Matthew N. O. Sadiku,et al.  Numerical Techniques in Electromagnetics , 2000 .

[15]  R. Kress Linear Integral Equations , 1989 .

[16]  Rainer Kußmaul,et al.  Ein numerisches Verfahren zur Lösung des Neumannschen Außenraumproblems für die Helmholtzsche Schwingungsgleichung , 1969, Computing.

[17]  J. Nöckel Resonances in nonintegrable open systems , 1997 .

[18]  Xiaodong Yang,et al.  Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics , 2007, 0707.2552.

[19]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[20]  Rainer Kress,et al.  On the numerical solution of a hypersingular integral equation in scattering theory , 1995 .

[21]  A. Stone,et al.  Quantum perturbation theory for the level splitting in billiards , 1998 .

[22]  Hakan E. Tureci,et al.  Modes of wave-chaotic dielectric resonators , 2005 .

[23]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[24]  Wei Cai,et al.  A Boundary Integral Equation Method for Photonic Crystal Fibers , 2006, J. Sci. Comput..

[25]  Francisco-Javier Sayas,et al.  Boundary integral approximation of a heat-diffusion problem in time-harmonic regime , 2006, Numerical Algorithms.

[26]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[27]  K. Vahala Optical microcavities , 2003, Nature.

[28]  Rainer Kreβ Zur numerischen Integration periodischer Funktionen nach der Rechteckregel , 1972 .

[29]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[30]  J. Wiersig,et al.  Unidirectional light emission from high-Q modes in optical microcavities , 2005, cond-mat/0512435.

[31]  Maciej Zworski,et al.  Resonance expansions of scattered waves , 2000 .

[32]  E. Narimanov,et al.  Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities. , 2002, Optics express.

[33]  Salim Meddahi,et al.  Analysis of a new BEM‐FEM coupling for two‐dimensional fluid‐solid interaction , 2005 .