Sensitivity analysis of distributed erosion models: Framework

[1] We introduce the (P, R, p) procedure for analysis of distributed erosion models, evaluating separate sensitivities to input fluxes (precipitations P), to the propensity of soil to surface flow (runoff conditions R), and to specific erosion properties (descriptive parameters p). For genericity and easier comparisons between models, superparameters of equivalent slope and equivalent erodibility are assembled from innate descriptive parameters: parameterization is reduced to four coded integers that are arguments of the soil loss function. Directional sensitivities are calculated in a deterministic way, associated with any selected displacement in parameter space. In this multistage and risk-orientated procedure, special emphasis is placed on trajectories from best-case toward worst-case scenarios, involving one-at-a-time variations and Latin Hypercube samples. Sensitivity maps are produced in the superparameter plane, tracing risk isovalues and estimating the relative importance of the equivalent parameters and of their spatial distributions.

[1]  A. D. Roo,et al.  LISEM: A SINGLE‐EVENT, PHYSICALLY BASED HYDROLOGICAL AND SOIL EROSION MODEL FOR DRAINAGE BASINS. II: SENSITIVITY ANALYSIS, VALIDATION AND APPLICATION , 1996 .

[2]  S. Uhlenbrook,et al.  Sensitivity analyses of a distributed catchment model to verify the model structure , 2005 .

[3]  Subira E. Munishi,et al.  Simiyu River catchment parameterization using SWAT model , 2007 .

[4]  S. Kamboj,et al.  Deterministic vs. Probabilistic Analyses to Identify Sensitive Parameters in Dose Assessment Using RESRAD , 2005, Health physics.

[5]  David Favis-Mortlock,et al.  Evaluation of field-scale and catchment-scale soil erosion models , 1999 .

[6]  Jon C. Helton,et al.  Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal , 1993 .

[7]  M. Voltz,et al.  Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events , 2001 .

[8]  R. Loch,et al.  Estimation of erosion model erodibility parameters from media properties , 2000 .

[9]  J. Poesen,et al.  Resistance of soils to concentrated flow erosion: A review , 2007 .

[10]  R. Bryan Considerations on soil erodibility indices and sheetwash , 1976 .

[11]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[12]  Florian Pappenberger,et al.  Multi-method global sensitivity analysis of flood inundation models. , 2008 .

[13]  D. Cacuci Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach , 1981 .

[14]  Keith Beven,et al.  Changing ideas in hydrology — The case of physically-based models , 1989 .

[15]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[16]  Murugesu Sivapalan,et al.  Scale issues in hydrological modelling: A review , 1995 .

[17]  J. Kleijnen,et al.  Statistical analyses of scatterplots to identify important factors in large-scale simulations, 2: robustness of techniques , 1999 .

[18]  Y. Bissonnais,et al.  Soil resistance to interrill erosion: Model parameterization and sensitivity , 2009 .

[19]  M. Esteves,et al.  PSEM_2D: A physically based model of erosion processes at the plot scale , 2005 .

[20]  R. Srinivasan,et al.  A global sensitivity analysis tool for the parameters of multi-variable catchment models , 2006 .

[21]  D. Cacuci,et al.  A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—II: Statistical Methods , 2004 .

[22]  Gerard Govers,et al.  The PESERA coarse scale erosion model for Europe. I. – Model rationale and implementation , 2008 .

[23]  Mark A. Nearing,et al.  Variability in Soil Erosion Data from Replicated Plots , 1999 .

[24]  Gerard Govers,et al.  Erosion models: quality of spatial predictions , 2003 .

[25]  Günter Blöschl,et al.  Scaling in hydrology , 2001 .

[26]  W. H. Wischmeier,et al.  Predicting rainfall erosion losses : a guide to conservation planning , 1978 .

[27]  Jean-Francois Fabries,et al.  Study of fifteen respirable aerosol samplers used in occupational hygiene , 2001 .

[28]  K. Beven,et al.  L'unicité de lieu, d'action et de temps , 2001 .

[29]  Olivier Cerdan,et al.  Modelling interrill erosion in small cultivated catchments , 2002 .

[30]  Stefano Tarantola,et al.  Sensitivity analysis of spatial models , 2009, Int. J. Geogr. Inf. Sci..

[31]  Roger D. Braddock,et al.  Sensitivity analysis of the IMAGE Greenhouse model , 1999, Environ. Model. Softw..

[32]  Mark A. Nearing,et al.  SENSITIVITY ANALYSIS OF THE WEPP HILLSLOPE PROFILE EROSION MODEL , 1990 .

[33]  M. Sivapalan Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? , 2003 .

[34]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[35]  R. Bryan Soil erodibility and processes of water erosion on hillslope , 2000 .

[36]  Victor Jetten,et al.  Defining monitoring strategies for runoff and erosion studies in agricultural catchments : a simulation approach , 1996 .

[37]  Stefano Tarantola,et al.  Uncertainty and sensitivity analysis: tools for GIS-based model implementation , 2001, Int. J. Geogr. Inf. Sci..

[38]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[39]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[40]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[41]  D. Yuen,et al.  Efficient sensitivity analysis for flow and transport in the Earth's crust and mantle , 2006 .

[42]  Joël Daroussin,et al.  Mapping erosion risk for cultivated soil in France , 2002 .

[43]  John Boardman,et al.  Soil erosion science: Reflections on the limitations of current approaches ☆ , 2006 .

[44]  Robert J. A. Jones,et al.  Indicators for pan-European assessment and monitoring of soil erosion by water , 2004 .

[45]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[46]  Patrick M. Reed,et al.  Advancing the identification and evaluation of distributed rainfall‐runoff models using global sensitivity analysis , 2007 .

[47]  G. Marsily,et al.  Quelques réflexions sur l'utilisation des modèles en hydrologie , 1994 .

[48]  Mark A. Nearing,et al.  Evaluating soil erosion models using measured plot data: accounting for variability in the data , 2000 .

[49]  Anthony J. Jakeman,et al.  A review of erosion and sediment transport models , 2003, Environ. Model. Softw..

[50]  F. L. Dimet,et al.  Sensitivity analysis and parameter estimation for the distributed modeling of infiltration excess overland flow , 2007 .

[51]  John N. Quinton,et al.  Sensitivity analysis of EUROSEM using Monte Carlo simulation I : hydrological, soil and vegetation parameters.:hydrological, soil and vegetation parameters , 2000 .

[52]  Mary Mitchell,et al.  Probabilistic exposure assessment of operator and residential exposure; a Canadian regulatory perspective. , 2001 .

[53]  D. Cacuci,et al.  SENSITIVITY and UNCERTAINTY ANALYSIS , 2003 .

[54]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .