Bayesian computational algorithms for social network analysis

In this chapter we review some of the most recent computational advances in the rapidly expanding field of statistical social network analysis using the R open-source software. In particular we will focus on Bayesian estimation for two important families of models: exponential random graph models (ERGMs) and latent space models (LSMs).

[1]  Martina Morris,et al.  Advances in exponential random graph (p*) models , 2007, Soc. Networks.

[2]  Martina Morris,et al.  Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects. , 2008, Journal of statistical software.

[3]  Alberto Caimo,et al.  Efficient computational strategies for doubly intractable problems with applications to Bayesian social networks , 2014, Stat. Comput..

[4]  Garry Robins,et al.  An introduction to exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[5]  T. B. Murphy,et al.  Joint Modelling of Multiple Network Views , 2013, 1301.3759.

[6]  Alberto Caimo,et al.  Bayesian inference for exponential random graph models , 2010, Soc. Networks.

[7]  Pavel N Krivitsky,et al.  Fitting Position Latent Cluster Models for Social Networks with latentnet. , 2008, Journal of statistical software.

[8]  D. Hunter,et al.  Inference in Curved Exponential Family Models for Networks , 2006 .

[9]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[10]  Ruth M. Ripley,et al.  Manual for RSiena , 2011 .

[11]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[12]  Isabella Gollini,et al.  Latent Variable Models for Networks , 2015 .

[13]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp , 1996 .

[14]  T. Snijders,et al.  p2: a random effects model with covariates for directed graphs , 2004 .

[15]  Alberto Caimo,et al.  Bergm: Bayesian Exponential Random Graphs in R , 2012, 1201.2770.

[16]  P. Holland,et al.  An Exponential Family of Probability Distributions for Directed Graphs , 1981 .

[17]  D. Hunter,et al.  Goodness of Fit of Social Network Models , 2008 .

[18]  Thomas Brendan Murphy,et al.  Review of statistical network analysis: models, algorithms, and software , 2012, Stat. Anal. Data Min..

[19]  Thomas Brendan Murphy,et al.  Variational Bayesian inference for the Latent Position Cluster Model , 2009, NIPS 2009.

[20]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[21]  Martina Morris,et al.  statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data. , 2008, Journal of statistical software.

[22]  Adrian E. Raftery,et al.  Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models , 2009, Soc. Networks.

[23]  Alberto Caimo,et al.  Bayesian model selection for exponential random graph models , 2012, Soc. Networks.

[24]  D. Lusseau,et al.  The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations , 2003, Behavioral Ecology and Sociobiology.

[25]  A. Raftery,et al.  Model‐based clustering for social networks , 2007 .

[26]  Pavel N. Krivitsky,et al.  Latent Position and Cluster Models for Statistical Networks , 2015 .

[27]  P. Pattison,et al.  New Specifications for Exponential Random Graph Models , 2006 .