BioASF: a framework for automatically generating executable pathway models specified in BioPAX

Motivation: Biological pathways play a key role in most cellular functions. To better understand these functions, diverse computational and cell biology researchers use biological pathway data for various analysis and modeling purposes. For specifying these biological pathways, a community of researchers has defined BioPAX and provided various tools for creating, validating and visualizing BioPAX models. However, a generic software framework for simulating BioPAX models is missing. Here, we attempt to fill this gap by introducing a generic simulation framework for BioPAX. The framework explicitly separates the execution model from the model structure as provided by BioPAX, with the advantage that the modelling process becomes more reproducible and intrinsically more modular; this ensures natural biological constraints are satisfied upon execution. The framework is based on the principles of discrete event systems and multi-agent systems, and is capable of automatically generating a hierarchical multi-agent system for a given BioPAX model. Results: To demonstrate the applicability of the framework, we simulated two types of biological network models: a gene regulatory network modeling the haematopoietic stem cell regulators and a signal transduction network modeling the Wnt/β-catenin signaling pathway. We observed that the results of the simulations performed using our framework were entirely consistent with the simulation results reported by the researchers who developed the original models in a proprietary language. Availability and Implementation: The framework, implemented in Java, is open source and its source code, documentation and tutorial are available at http://www.ibi.vu.nl/programs/BioASF. Contact: j.heringa@vu.nl

[1]  Chris Sander,et al.  ChiBE: interactive visualization and manipulation of BioPAX pathway models , 2010, Bioinform..

[2]  Gary D Bader,et al.  BioPAX – A community standard for pathway data sharing , 2010, Nature Biotechnology.

[3]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[4]  Michael Wooldridge,et al.  Introduction to multiagent systems , 2001 .

[5]  A. Salwicki Logics of Programs and Their Applications , 1980, Lecture Notes in Computer Science.

[6]  Hans-Dieter Burhard On priorities of parallelism: Petri nets under the maximum firing strategy , 1980 .

[7]  Christos G. Cassandras,et al.  Introduction to Discrete Event Systems , 1999, The Kluwer International Series on Discrete Event Dynamic Systems.

[8]  Wan Fokkink,et al.  What Can Formal Methods Bring to Systems Biology? , 2009, FM.

[9]  Chris T. A. Evelo,et al.  WikiPathways: building research communities on biological pathways , 2011, Nucleic Acids Res..

[10]  Henri E. Bal,et al.  Executing multicellular differentiation: quantitative predictive modelling of C.elegans vulval development , 2009, Bioinform..

[11]  Lamellocitáira Jellemz,et al.  Drosophila Melanogaster , 1944, Nature.

[12]  S. Bornholdt,et al.  Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast , 2007, PloS one.

[13]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[14]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[15]  Gary D. Bader,et al.  Pathguide: a Pathway Resource List , 2005, Nucleic Acids Res..

[16]  H. Lan,et al.  SWRL : A semantic Web rule language combining OWL and ruleML , 2004 .

[17]  Sarala M. Wimalaratne,et al.  The Systems Biology Graphical Notation , 2009, Nature Biotechnology.

[18]  Jane Hillston,et al.  Bio-PEPA: A framework for the modelling and analysis of biological systems , 2009, Theor. Comput. Sci..

[19]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[20]  Jerry R. Hobbs,et al.  DAML-S: Semantic Markup for Web Services , 2001, SWWS.

[21]  Gary D. Bader,et al.  Using Biological Pathway Data with Paxtools , 2013, PLoS Comput. Biol..

[22]  D'Avanzo Ernesto,et al.  Review of M. Nagasaki, A. Saito, A. Doi, H. Matsuno, S. Miyano: “Foundations of Systems Biology: using Cell Illustrator and pathway databases”. , 2010 .

[23]  Ioannis Xenarios,et al.  Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model , 2013, Bioinform..

[24]  Chris Sander,et al.  Pattern search in BioPAX models , 2013, Bioinform..

[25]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[26]  Giovanni De Micheli,et al.  Synchronous versus asynchronous modeling of gene regulatory networks , 2008, Bioinform..

[27]  Hiroaki Kitano,et al.  Foundations of systems biology , 2001 .

[28]  Gary D Bader,et al.  NetPath: a public resource of curated signal transduction pathways , 2010, Genome Biology.

[29]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[30]  Gary D. Bader,et al.  The BioPAX Validator , 2013, Bioinform..

[31]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[32]  Henning Hermjakob,et al.  The Reactome pathway Knowledgebase , 2015, Nucleic acids research.

[33]  Gary D. Bader,et al.  Pathway Commons, a web resource for biological pathway data , 2010, Nucleic Acids Res..

[34]  Jaap Heringa,et al.  Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling , 2016, bioRxiv.

[35]  Henri E. Bal,et al.  Executing multicellular differentiation: quantitative predictive modelling of C.elegans vulval development , 2009, Bioinform..