Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil.

[1]  P. Ajayan,et al.  In situ synthesis and assembly of gold nanoparticles embedded in glass-forming liquid crystals. , 2007, Angewandte Chemie.

[2]  E. Kenawy,et al.  The chemistry and applications of antimicrobial polymers: a state-of-the-art review. , 2007, Biomacromolecules.

[3]  P. Vemula,et al.  In Situ Synthesis of Gold Nanoparticles Using Molecular Gels and Liquid Crystals from Vitamin-C Amphiphiles , 2007 .

[4]  Jianzhu Chen,et al.  Polymeric coatings that inactivate both influenza virus and pathogenic bacteria , 2006, Proceedings of the National Academy of Sciences.

[5]  S. Ghosh,et al.  Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[6]  Ayusman Sen,et al.  Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. , 2006, Journal of the American Chemical Society.

[7]  P. Vemula,et al.  Smart amphiphiles: hydro/organogelators for in situ reduction of gold. , 2006, Chemical communications.

[8]  J. O. Metzger,et al.  Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification , 2006, Applied Microbiology and Biotechnology.

[9]  Zhimin Liu,et al.  Sonochemical formation of single-crystalline gold nanobelts. , 2006, Angewandte Chemie.

[10]  Jean-Marie Rouillard,et al.  Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[11]  M. Yacamán,et al.  The bactericidal effect of silver nanoparticles , 2005, Nanotechnology.

[12]  E. Bouwman,et al.  The oxidative drying of alkyd paint catalysed by metal complexes , 2005 .

[13]  F. Shahidi,et al.  Bailey's Industrial oil and fat products , 2005 .

[14]  John Bohannon,et al.  'Smart Coatings' Research Shows The Virtues of Superficiality , 2005, Science.

[15]  Alexander M Klibanov,et al.  Surpassing nature: rational design of sterile-surface materials. , 2005, Trends in biotechnology.

[16]  H. Yin,et al.  New insights regarding the autoxidation of polyunsaturated fatty acids. , 2005, Antioxidants & redox signaling.

[17]  Luke P. Lee,et al.  High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. , 2005, Nano letters.

[18]  S. Manolache,et al.  Plasma-enhanced deposition of Silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics , 2004 .

[19]  Michael Wagener,et al.  An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. , 2004, Biomaterials.

[20]  I. Sondi,et al.  Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. , 2004, Journal of colloid and interface science.

[21]  S. Ghosh,et al.  Aldehyde assisted wet chemical route to synthesize gold nanoparticles , 2004 .

[22]  Jan Balzarini,et al.  Synthesis, Characterization and in Vitro Study of the Cytostatic and Antiviral Activity of New Polymeric Silver(I) Complexes with Ribbon Structures Derived from the Conjugated Heterocyclic Thioamide 2-Mercapto-3,4,5,6-tetra- hydropyrimidine , 2004 .

[23]  J. Morrow,et al.  Identification of a Novel Class of Endoperoxides from Arachidonate Autoxidation* , 2004, Journal of Biological Chemistry.

[24]  Jie Fu,et al.  Completely "green" synthesis and stabilization of metal nanoparticles. , 2003, Journal of the American Chemical Society.

[25]  R. W. Fessenden,et al.  On the interactions of free radicals with gold nanoparticles. , 2003, Journal of the American Chemical Society.

[26]  P. Wisian-Neilson Polymer Films with Embedded Metal Nanoparticles. Springer Series in Materials Science. Volume 52 By Andreas Heilmann (Fraunhofer-Institut für Werkstoffmechanik). Springer-Verlag: Berlin, Heidelberg, New York. 2003. x + 216 pp. $79.95. ISBN 3-540-43151-9. , 2003 .

[27]  A. Betts,et al.  Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum , 2003 .

[28]  Nicholas A. Kotov,et al.  Preparation of nanoparticle coatings on surfaces of complex geometry , 2003 .

[29]  Cyril Aymonier,et al.  Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. , 2002, Chemical communications.

[30]  A. Heilmann Polymer Films with Embedded Metal Nanoparticles , 2002 .

[31]  R. Naik,et al.  Biomimetic synthesis and patterning of silver nanoparticles , 2002, Nature materials.

[32]  M. Bruening,et al.  Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films , 2002 .

[33]  A. Lansdown,et al.  Silver. I: Its antibacterial properties and mechanism of action. , 2002, Journal of wound care.

[34]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[35]  Z. Qian,et al.  The mechanism of Fe(2+)-initiated lipid peroxidation in liposomes: the dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical. , 2000, The Biochemical journal.

[36]  J. Bieleman Additives for Coatings , 2000 .

[37]  E Olsson,et al.  Silver-based crystalline nanoparticles, microbially fabricated. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Ahmed-Choudhury,et al.  Hepatobiliary effects of tertiary-butylhydroperoxide (tBOOH) in isolated rat hepatocyte couplets. , 1998, Toxicology and applied pharmacology.

[39]  Sudhir Kapoor,et al.  Preparation, Characterization, and Surface Modification of Silver Particles , 1998 .

[40]  Paul T. Anastas,et al.  Green chemistry : frontiers in benign chemical syntheses and processes , 1998 .

[41]  Y. Maeda,et al.  Synthesis of Palladium Nanoparticles with Interstitial Carbon by Sonochemical Reduction of Tetrachloropalladate(II) in Aqueous Solution , 1997 .

[42]  A D Russell,et al.  Antimicrobial activity and action of silver. , 1994, Progress in medicinal chemistry.

[43]  C. Pillai,et al.  Synthesis and characterization of a self‐crosslinkable polymer from cardanol: Autooxidation of poly(cardanyl acrylate) to crosslinked film , 1993 .

[44]  C. Pillai,et al.  Self‐crosslinkable monomer from cardanol: crosslinked beads of poly(cardanyl acrylate) by suspension polymerization , 1992 .

[45]  H. Esterbauer,et al.  Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. , 1991, Free radical biology & medicine.

[46]  P. Doherty,et al.  The biocompatibility of silver , 1989 .

[47]  J. Tyman Non-isoprenoid long chain phenols , 1979 .

[48]  J. F. Black Metal-catalyzed autoxidation. The unrecognized consequences of metal-hydroperoxide complex formation , 1978 .

[49]  J Tonndorf,et al.  Cochlear prostheses. A state-of-the-art review. , 1977, The Annals of otology, rhinology & laryngology. Supplement.

[50]  R O Becker,et al.  Electrically Generated Silver Ions: Quantitative Effects on Bacterial and Mammalian Cells , 1976, Antimicrobial Agents and Chemotherapy.

[51]  L. Reich,et al.  Autoxidation of hydrocarbons and polyolefins , 1969 .