Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility

A line-imaging velocity interferometer has been implemented at the OMEGA laser facility of the Laboratory for Laser Energetics, University of Rochester. This instrument is the primary diagnostic for a variety of experiments involving laser-driven shock-wave propagation, including high-pressure equation of state experiments, materials characterization experiments, shock characterization for Rayleigh–Taylor experiments, and shock timing experiments for inertial confinement fusion research. Using a laser probe beam to illuminate a target, the instrument measures shock breakout times at temporal resolutions as low as 20 ps, and spatial resolution ∼4 μm. For velocity measurements the detection limit is <0.1 km/s, and velocities of interfaces, free surfaces, and shock fronts traveling through transparent media can be measured with accuracies ∼1% over the range from 4 km/s to greater than 50 km/s. Quantitative measurements of the optical reflectance of ionizing shock fronts can also be obtained simultaneously wi...

[1]  R. Fabbro,et al.  Ultrahigh-Pressure Laser-Driven Shock-Wave Experiments at 0.26 μm Wavelength , 1984 .

[2]  M. Koenig,et al.  Absolute equation of state measurements of iron using laser driven shocks , 2002 .

[3]  Nakai,et al.  Uniform multimegabar shock waves in solids driven by laser-generated thermal radiation. , 1994, Physical review letters.

[4]  Gilbert W. Collins,et al.  Shock-induced transformation of liquid deuterium into a metallic fluid , 2000, Physical review letters.

[5]  P. Ronney,et al.  Modified Fourier transform method for interferogram fringe pattern analysis. , 1997, Applied optics.

[6]  F Roddier,et al.  Interferogram analysis using Fourier transform techniques. , 1987, Applied optics.

[7]  L. M. Barker,et al.  Interferometer Technique for Measuring the Dynamic Mechanical Properties of Materials , 1965 .

[8]  P. Celliers,et al.  Reflectivity of a shocked solid surface , 1986 .

[9]  T. N. Archuleta,et al.  Multipurpose 10 in. manipulator-based optical telescope for Omega and the Trident laser facilities , 1999 .

[10]  D. D. Bloomquist,et al.  Optically recording interferometer for velocity measurements with subnanosecond resolution , 1983 .

[11]  J. W. Shaner,et al.  Ultrahigh-Pressure Laser-Driven Shock-Wave Experiments in Aluminum , 1979 .

[12]  L. M. Barker,et al.  Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire , 1970 .

[13]  A. Ng,et al.  Measurement of shock heating in laser-irradiated solids , 1985 .

[14]  R. A. Graham,et al.  Shock waves in condensed matter-1981 , 1982 .

[15]  Gilbert W. Collins,et al.  Accurate measurement of laser-driven shock trajectories with velocity interferometry , 1998 .

[16]  Gilbert W. Collins,et al.  Shock-induced transformation of Al2O3 and LiF into semiconducting liquids. , 2003, Physical review letters.

[17]  Gilbert W. Collins,et al.  Equation of state data for iron at pressures beyond 10 Mbar. , 2002, Physical review letters.

[18]  L. M. Barker,et al.  Correction to the velocity‐per‐fringe relationship for the VISAR interferometer , 1974 .

[19]  V. N. Kondrashov,et al.  Optical probing of laser-induced indirectly driven shock waves in aluminum , 1997 .

[20]  Y. Gupta,et al.  Shock Waves in Condensed Matter , 1986 .

[21]  Xu,et al.  Thermal equilibration in a shock wave. , 1992, Physical review letters.

[22]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[23]  Gilbert W. Collins,et al.  Interferometric and Chirped Optical Probe Techniques for High-Pressure Equation-of-State Measurements , 2000 .

[24]  J Edwards,et al.  Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state. , 2004, Physical review letters.

[25]  L. R. Veeser,et al.  Studies of Laser-Driven Shock Waves in Aluminum , 1978 .

[26]  K A Nugent,et al.  Interferogram analysis using an accurate fully automatic algorithm. , 1985, Applied optics.

[27]  T. C. Sangster,et al.  Observations of modulated shock waves in solid targets driven by spatially modulated laser beams , 2002 .

[28]  Benuzzi,et al.  Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10-40 Mbar pressure range. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  S. Eliezer,et al.  Development of an optically recording velocity interferometer system for laser induced shock waves measurements , 1996 .

[30]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[31]  J. Slepicka,et al.  Stabilized nonlinear regression for interferogram analysis. , 1995, Applied optics.

[32]  R. E. Setchell Index of refraction of shock-compressed fused silica and sapphire , 1979 .

[33]  L. Suter,et al.  Drive characterization of indirect drive targets on the Nova laser (invited) , 1995 .

[34]  Luiz Eduardo Borges da Silva,et al.  Shock timing technique for the National Ignition Facility , 2001 .

[35]  Gilbert W. Collins,et al.  Coupling static and dynamic compressions: first measurements in dense hydrogen , 2004 .

[36]  William A. Stygar,et al.  Experimental configuration for isentropic compression of solids using pulsed magnetic loading , 2001 .

[37]  D. R. Goosman,et al.  Analysis of the laser velocity interferometer , 1975 .

[38]  W. F. Hemsing,et al.  Velocity sensing interferometer (VISAR) modification. , 1979, The Review of scientific instruments.

[39]  Y. Gupta,et al.  Refractive index and elastic properties of z-cut quartz shocked to 60 kbar , 2000 .

[40]  W. Macy,et al.  Two-dimensional fringe-pattern analysis. , 1983, Applied optics.

[41]  O. B. Crump,et al.  Using a fast lens to collect the signal in a VISAR system , 1991 .

[42]  G. Mastin,et al.  Digital image processing of velocity-interferometer data obtained from laser-driven shock experiments , 1986 .