Skart: A skewness- and autoregression-adjusted batch-means procedure for simulation analysis

We discuss Skart, an automated batch-means procedure for constructing a skewness- and autoregression-adjusted confidence interval for the steady-state mean of a simulation output process. Skart is a sequential procedure designed to deliver a confidence interval that satisfies user-specified requirements concerning not only coverage probability but also the absolute or relative precision provided by the half-length. Skart exploits separate adjustments to the half-length of the classical batch-means confidence interval so as to account for the effects on the distribution of the underlying Student¿s t -statistic that arise from nonnormality and autocorrelation of the batch means. Skart also delivers a point estimator for the steady-state mean that is approximately free of initialization bias. In an experimental performance evaluation involving a wide range of test processes, Skart compared favorably with other simulation analysis methods-namely, its predecessors ASAP3, WASSP, and SBatch as well as ABATCH, LBATCH, the Heidelberger-Welch procedure, and the Law-Carson procedure.

[1]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[2]  R. Willink,et al.  A Confidence Interval and Test for the Mean of an Asymmetric Distribution , 2005 .

[3]  Chris Sells,et al.  Mastering Visual Studio .Net , 2003 .

[4]  G. C. Tiao,et al.  Asymptotic behaviour of temporal aggregates of time series , 1972 .

[5]  James R. Wilson,et al.  Efficient Computation of Overlapping Variance Estimators for Simulation , 2007, INFORMS J. Comput..

[6]  Bruce W. Schmeiser,et al.  Properties of batch means from stationary ARMA time series , 1987 .

[7]  Emily K. Lada,et al.  Performance of a Wavelet-Based Spectral Procedure for Steady-State Simulation Analysis , 2007, INFORMS J. Comput..

[8]  K. Brewer Some consequences of temporal aggregation and systematic sampling for ARMA and ARMAX models , 1973 .

[9]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[10]  Carolyn Pillers Dobler,et al.  Mathematical Statistics , 2002 .

[11]  James R. Wilson,et al.  Performance comparison of MSER-5 and N-Skart on the simulation start-up problem , 2010, Proceedings of the 2010 Winter Simulation Conference.

[12]  L. Telser,et al.  Discrete Samples and Moving Sums in Stationary Stochastic Processes , 1967 .

[13]  Philip Heidelberger,et al.  A spectral method for confidence interval generation and run length control in simulations , 1981, CACM.

[14]  Emily K. Lada,et al.  ASAP3: a batch means procedure for steady-state simulation analysis , 2005, TOMC.

[15]  James R. Wilson,et al.  Convergence Properties of the Batch Means Method for Simulation Output Analysis , 2001, INFORMS J. Comput..

[16]  Halim Damerdji,et al.  Strong Consistency of the Variance Estimator in Steady-State Simulation Output Analysis , 1994, Math. Oper. Res..

[17]  D. L. Wallace Asymptotic Approximations to Distributions , 1958 .

[18]  J. Gani,et al.  Essays in Time Series and Allied Processes. , 1986 .

[19]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[20]  E. Lehmann Elements of large-sample theory , 1998 .

[21]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[22]  P. A. Blight The Analysis of Time Series: An Introduction , 1991 .

[23]  Ali Tafazzoli Yazdi Skart: A Skewness- and Autoregression-Adjusted Batch-Means Procedure for Simulation Analysis , 2009 .

[24]  Randall P. Sadowski,et al.  Simulation with Arena , 1998 .

[25]  Takeshi Amemiya,et al.  The Effect of Aggregation on Prediction in the Autoregressive Model , 1972 .

[26]  George S. Fishman,et al.  Discrete-Event Simulation : Modeling, Programming, and Analysis , 2001 .

[27]  J.P.C. Kleijnen,et al.  Testing the mean of an asymmetric population: Johnson's modified t test revisited , 1985 .

[28]  Garrett Birkhoff,et al.  A survey of modern algebra , 1942 .

[29]  James R. Wilson,et al.  Skart: a skewness-and autoregression-adjusted batch-means procedure for simulation analysis , 2008, WSC 2008.

[30]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[31]  Sheldon M. Ross,et al.  Introduction to Probability Models (4th ed.). , 1990 .

[32]  L. Schruben,et al.  Asymptotic Properties of Some Confidence Interval Estimators for Simulation Output , 1984 .

[33]  D. Goldsman,et al.  ASAP2: an improved batch means procedure for simulation output analysis , 2002, Proceedings of the Winter Simulation Conference.

[34]  A. Nádas An Extension of a Theorem of Chow and Robbins on Sequential Confidence Intervals for the Mean , 1969 .

[35]  James R. Wilson,et al.  Overlapping Variance Estimators for Simulation , 2007, Oper. Res..

[36]  H. Hochstadt Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable; 3rd ed. (Lars V. Ahlfors) , 1980 .

[37]  P. Heidelberger,et al.  Adaptive spectral methods for simulation output analysis , 1981 .

[38]  A. A. Crane,et al.  An introduction to the regenerative method for simulation analysis , 1977 .

[39]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[40]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[41]  D. Iglehart Simulating stable stochastic systems, V: Comparison of ratio estimators , 1975 .

[42]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[43]  Peter Hall,et al.  On the Removal of Skewness by Transformation , 1992 .

[44]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[45]  H. Robbins,et al.  ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN. , 1965 .

[46]  James R. Wilson,et al.  SBatch: A spaced batch means procedure for steady-state simulation analysis , 2008 .

[47]  T. Cipra Statistical Analysis of Time Series , 2010 .

[48]  H. Piaggio Mathematical Analysis , 1955, Nature.

[49]  Averill Law,et al.  Simulation Modeling and Analysis (McGraw-Hill Series in Industrial Engineering and Management) , 2006 .

[50]  J. Neumann Distribution of the Ratio of the Mean Square Successive Difference to the Variance , 1941 .

[51]  David Veredas,et al.  Temporal Aggregation of Univariate and Multivariate Time Series Models: A Survey , 2008 .

[52]  N. J. Johnson,et al.  Modified t Tests and Confidence Intervals for Asymmetrical Populations , 1978 .

[53]  D. Daley The serial correlation coefficients of waiting times in a stationary single server queue , 1968, Journal of the Australian Mathematical Society.

[54]  George S. Fishman,et al.  Solution of Large Networks by Matrix Methods , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[55]  K. Preston White,et al.  Stationarity tests and MSER-5: Exploring the intuition behind mean-squared-error-reduction in detecting and correcting initialization bias , 2008, 2008 Winter Simulation Conference.

[56]  Emily K. Lada,et al.  A wavelet-based spectral procedure for steady-state simulation analysis , 2006, Eur. J. Oper. Res..

[57]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[58]  George S. Fishman,et al.  An Implementation of the Batch Means Method , 1997, INFORMS J. Comput..

[59]  Anthony L Bertapelle Spectral Analysis of Time Series. , 1979 .

[60]  Averill M. Law,et al.  A Sequential Procedure for Determining the Length of a Steady-State Simulation , 1979, Oper. Res..

[61]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[62]  G. Elements of the Theory of Functions , 1896, Nature.

[63]  C. D. Kemp,et al.  Kendall's Advanced Theory of Statistics, Volume 1, Distribution Theory. , 1988 .

[64]  Emily K. Lada,et al.  Performance evaluation of recent procedures for steady-state simulation analysis , 2006 .

[65]  P. Davies,et al.  Kendall's Advanced Theory of Statistics. Volume 1. Distribution Theory , 1988 .