Measuring Quantum Coherence with Entanglement.

Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.

[1]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[2]  Gerardo Adesso,et al.  Negativity of quantumness and its interpretations , 2012, 1211.4022.

[3]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[4]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[5]  M. Horodecki,et al.  Rates of asymptotic entanglement transformations for bipartite mixed states: Maximally entangled states are not special , 2002, quant-ph/0207031.

[6]  D. Bruß,et al.  Linking a distance measure of entanglement to its convex roof , 2010, 1006.3077.

[7]  O. Biham,et al.  Groverian measure of entanglement for mixed states , 2005, quant-ph/0508108.

[8]  S. Virmani,et al.  LETTER TO THE EDITOR: Operator monotones, the reduction criterion and the relative entropy , 2000, quant-ph/0002075.

[9]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[10]  Diego Paiva Pires,et al.  Geometric lower bound for a quantum coherence measure , 2015, 1501.05271.

[11]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[12]  Masoud Mohseni,et al.  Role of quantum coherence and environmental fluctuations in chromophoric energy transport. , 2008, The journal of physical chemistry. B.

[13]  J. Åberg Catalytic coherence. , 2013, Physical review letters.

[14]  W. Vogel,et al.  Witnessing the degree of nonclassicality of light , 2014, 1406.7094.

[15]  G. Vidal On the characterization of entanglement , 1998 .

[16]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[17]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[18]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[19]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[20]  Ronnie Kosloff,et al.  Generating molecular rovibrational coherence by two-photon femtosecond photoassociation of thermally hot atoms. , 2011, Physical review letters.

[21]  Gerardo Adesso,et al.  Frozen quantum coherence. , 2014, Physical review letters.

[22]  Davide Girolami,et al.  Observable measure of quantum coherence in finite dimensional systems. , 2014, Physical review letters.

[23]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[24]  J. Sperling,et al.  Resources for Quantum Technology: Nonclassicality versus Entanglement , 2014 .

[25]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[26]  Franco Nori,et al.  Witnessing Quantum Coherence: from solid-state to biological systems , 2012, Scientific Reports.

[27]  Severin T. Schneebeli,et al.  Probing the conductance superposition law in single-molecule circuits with parallel paths , 2012, Nature Nanotechnology.

[28]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[29]  T. Rudolph,et al.  Quantum coherence, time-translation symmetry and thermodynamics , 2014, 1410.4572.

[30]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[31]  S. Huelga,et al.  Vibrations, quanta and biology , 2013, 1307.3530.

[32]  S. Lloyd,et al.  Quantum coherence in biological systems , 2011 .

[33]  Florian Mintert,et al.  A quantitative theory of coherent delocalization , 2013, 1310.6962.

[34]  E. Andrade Contemporary Physics , 1945, Nature.

[35]  Gerardo Adesso,et al.  Experimental entanglement activation from discord in a programmable quantum measurement. , 2013, Physical review letters.

[36]  H. Linke,et al.  Increasing thermoelectric performance using coherent transport , 2011, 1107.0572.

[37]  Zach DeVito,et al.  Opt , 2017 .

[38]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[39]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[40]  Gerardo Adesso,et al.  CHARACTERIZING QUANTUMNESS VIA ENTANGLEMENT CREATION , 2011, 1105.3419.

[41]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[43]  Gregory D. Scholes,et al.  Delocalization and Entanglement: A Method of Developing Analytical Multipartite Measures for Mixed W-like States , 2014 .

[44]  W. Vogel,et al.  Nonclassicality of quantum states: a hierarchy of observable conditions. , 2002, Physical review letters.

[45]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[46]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[47]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[48]  Gerardo Adesso,et al.  Quantumness of correlations revealed in local measurements exceeds entanglement , 2012 .

[49]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[50]  Heng Fan,et al.  Fidelity and trace-norm distances for quantifying coherence , 2014, 1410.8327.

[51]  Alexander Streltsov,et al.  Quantum Correlations Beyond Entanglement: and Their Role in Quantum Information Theory , 2014 .

[52]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[53]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[54]  Anthony J Leggett,et al.  Macroscopic Quantum Systems and the Quantum Theory of Measurement (Progress in Statistical and Solid State Physics--In Commemoration of the Sixtieth Birthday of Ryogo Kubo) -- (Statistical Physics) , 1980 .

[55]  M. Nielsen,et al.  Entanglement monotone derived from Grover's algorithm , 2001, quant-ph/0112097.

[56]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[57]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .