Electro-netting: fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing.

Two-dimensional (2D) polyacrylic acid (PAA) nano-nets that comprise interlinked ultrathin nanowires with diameters of 10-30 nm are successfully prepared by a facile electro-netting process. Nano-nets feature a clear geometric characteristic with ideal and weighted Steiner networks due to the rapid phase separation process and its obeyed minimal energy principle. The versatile nano-nets create enhanced interconnectivity and additional surface area and facilitate the diffusion of analytes into the membranes, which significantly boost the gas diffusion coefficient and sensing properties. As one example, PAA membranes containing fibers and nano-nets used as sensing materials are deposited by electrospinning/electro-netting on an electrode of a quartz crystal microbalance (QCM) for trimethylamine (TMA) detection, which exhibits a quick response (∼180 s), low detection limit (1 ppm) and ideal selectivity at room temperature.

[1]  B. Ding,et al.  Quartz Crystal Microbalance-based Nanofibrous Membranes for Humidity Detection: Theoretical Model and Experimental Verification , 2010 .

[2]  Guang Li,et al.  Development of QCM Trimethylamine Sensor Based on Water Soluble Polyaniline , 2007, Sensors.

[3]  Kaiyu Liu,et al.  Single-Crystalline Semiconductor In(OH)3 Nanocubes with Bifunctions: Superhydrophobicity and Photocatalytic Activity , 2010 .

[4]  J. Zhan,et al.  Fabrication and Gas‐Sensing Properties of Porous ZnO Nanoplates , 2008 .

[5]  Eyal Zussman,et al.  Experimental investigation of the governing parameters in the electrospinning of polymer solutions , 2004 .

[6]  Yaming Wang,et al.  Polyaniline–TiO2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies , 2008 .

[7]  Andrew J. Medford,et al.  Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide , 2009 .

[8]  Wen-Li Wu,et al.  Moisture absorption and absorption kinetics in polyelectrolyte films: influence of film thickness. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[9]  Q. Guo,et al.  Interpolymer complexes and miscible blends of poly(p-vinyl phenol) and poly(ethylene imine) , 1997 .

[10]  Kwangsok Kim,et al.  Structure and process relationship of electrospun bioabsorbable nanofiber membranes , 2002 .

[11]  Wolfgang M. Sigmund,et al.  Poly(acrylic acid) nanofibers by electrospinning , 2005 .

[12]  B. Ding,et al.  Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors , 2010 .

[13]  Soojin Park,et al.  Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning , 2010 .

[15]  Wanjin Zhang,et al.  Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications , 2007 .

[16]  Chaobo Huang,et al.  Electrospun polymer nanofibres with small diameters , 2006, Nanotechnology.

[17]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[18]  Yongxiang Xu,et al.  Water vapour in the coatings of alkyd and polyurethane varnish , 2002 .

[19]  Shiming Liang,et al.  Trimethylamine sensing properties of sensors based on MoO3 microrods , 2010 .

[20]  Bin Ding,et al.  Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. , 2010, ACS applied materials & interfaces.

[21]  Bin Ding,et al.  Electrospun nanomaterials for ultrasensitive sensors , 2010, Materials Today.

[22]  X. Qin,et al.  Filtration properties of electrospinning nanofibers , 2006 .

[23]  Younan Xia,et al.  Electrospun nanofibers for neural tissue engineering. , 2010, Nanoscale.

[24]  Hongwei Ma,et al.  One-step fabrication of porous polymeric microcage via electrified jetting. , 2010, Nanoscale.

[25]  R. Grimm,et al.  Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields. , 2005, The journal of physical chemistry. B.

[26]  Y. Hsieh,et al.  Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan , 2008, Nanotechnology.

[27]  Seeram Ramakrishna,et al.  Electrospun nanofibrous filtration membrane , 2006 .

[28]  Morinobu Endo,et al.  Self‐Sustained Thin Webs Consisting of Porous Carbon Nanofibers for Supercapacitors via the Electrospinning of Polyacrylonitrile Solutions Containing Zinc Chloride , 2007 .

[29]  Faheem A. Sheikh,et al.  Spider-net within the N6, PVA and PU electrospun nanofiber mats using salt addition: Novel strategy in the electrospinning process , 2009 .

[30]  Holger Schönherr,et al.  Chain Packing in Electro-Spun Poly(ethylene oxide) Visualized by Atomic Force Microscopy , 1996 .

[31]  Hsueh-Chia Chang,et al.  Assembly of Multi‐Stranded Nanofiber Threads through AC Electrospinning , 2009 .

[32]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[33]  Andreas Greiner,et al.  Nanostructured Fibers via Electrospinning , 2001 .

[34]  Nagy L. Torad,et al.  Quartz crystal microbalance sensor for detection of aliphatic amines vapours , 2010 .

[35]  Bin Ding,et al.  A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance , 2010, Nanotechnology.

[36]  R. Spretz,et al.  Use of Coaxial Gas Jackets to Stabilize Taylor Cones of Volatile Solutions and to Induce Particle‐to‐Fiber Transitions , 2004 .

[37]  Bin Ding,et al.  Formation of novel 2D polymer nanowebs via electrospinning , 2006 .