Compositional message sequence charts

A message sequence chart (MSC) is a standard notation for describing the interaction between communicating objects. It is popular among the designers of communication protocols. MSCs enjoy both a visual and a textual representation. High-level MSCs (HMSCs) allow specifying infinite scenarios and different choices. Specifically, an HMSC consists of a graph, where each node is a finite MSC with matched send and receive events, and vice versa. In this paper we demonstrate a weakness of HMSCs, which disallows one to model certain interactions. We will show, by means of an example, that some simple finite state communication protocol cannot be represented using HMSCs. We then propose an extension to the MSC standard which allows HMSC nodes to include unmatched messages. The corresponding graph notation will be called HCMSC, which stands for high-level Compositional message sequence charts. With the extended framework, we provide an algorithm for automatically constructing an MSC representation for finite state asynchronous message passing protocols.

[1]  Anca Muscholl,et al.  Deciding Properties for Message Sequence Charts , 1998, FoSSaCS.

[2]  Javier Esparza,et al.  Efficient Algorithms for Model Checking Pushdown Systems , 2000, CAV.

[3]  Leslie Lamport,et al.  Time, clocks, and the ordering of events in a distributed system , 1978, CACM.

[4]  Pierre Wolper,et al.  A Partial Approach to Model Checking , 1994, Inf. Comput..

[5]  Doron A. Peled,et al.  Path Exploration Tool , 1999, TACAS.

[6]  Rajeev Alur,et al.  An Analyzer for Message Sequence Charts , 1996, Softw. Concepts Tools.

[7]  Wojciech Penczek,et al.  Model-checking of causality properties , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[8]  Rajeev Alur,et al.  Model Checking of Message Sequence Charts , 1999, CONCUR.

[9]  Rajeev Alur,et al.  Inference of message sequence charts , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.

[10]  Tommaso Bolognesi,et al.  Tableau methods to describe strong bisimilarity on LOTOS processes involving pure interleaving and enabling , 1994, FORTE.

[11]  Anca Muscholl,et al.  Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces , 1999, MFCS.

[12]  Sjouke Mauw,et al.  Message Sequence Chart (MSC) , 1996 .

[13]  Doron A. Peled,et al.  Specification and Verification of Message Sequence Charts , 2000, FORTE.

[14]  Patrice Godefroid,et al.  Partial-Order Methods for the Verification of Concurrent Systems , 1996, Lecture Notes in Computer Science.

[15]  Anca Muscholl,et al.  From Finite State Communication Protocols to High-Level Message Sequence Charts , 2001, ICALP.

[16]  P. Madhusudan,et al.  Reasoning about Sequential and Branching Behaviours of Message Sequence Graphs , 2001, ICALP.

[17]  Doron A. Peled,et al.  All from One, One for All: on Model Checking Using Representatives , 1993, CAV.

[18]  Anca Muscholl,et al.  Deciding Properties of Message Sequence Charts , 2003, Scenarios: Models, Transformations and Tools.

[19]  Loïc Hélouët,et al.  Decomposition of Message Sequence Charts , 2000, SAM.

[20]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[21]  Michel A. Reniers,et al.  High-level message sequence charts , 1997, SDL Forum.

[22]  Madhavan Mukund,et al.  On Message Sequence Graphs and Finitely Generated Regular MSC Languages , 2000, ICALP.