Multiscale dynamic Monte Carlo/continuum model of drying and nonideal polycondensation in sol‐gel silica films

The process of forming sol-gel silica thin films involves multiple length and time scales ranging from molecular to macroscopic, and it is challenging to fully model because the polymerization is nonideal. A multiscale model is described to link macroscopic flow and drying (controlled by process parameters) to film microstructure (which dictates the properties of the films). In this modeling strategy, dynamic Monte Carlo (DMC) polymerization simulations are coupled to a continuum model of drying. The entire DMC simulation is treated as a particle of sol whose position and composition are tracked using a diffusion/evaporation finite difference method. By simulating swarms of particles starting from different positions in the film, the multiscale model predicts different drying/gelation phenomena, and predicts the occurrence of gradients of concentration and gelation in the films which can lead to the formation of a gel skin near the top surface of the film. © 2010 American Institute of Chemical Engineers AIChE J, 2010

[1]  Matej Praprotnik,et al.  Multiscale simulation of soft matter: from scale bridging to adaptive resolution. , 2008, Annual review of physical chemistry.

[2]  E. Fortunato,et al.  Sol–gel cobalt oxide–silica nanocomposite thin films for gas sensing applications , 2008 .

[3]  C. Laberty‐Robert,et al.  Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity† , 2008 .

[4]  Junwei Di,et al.  Direct electrochemistry of lactate dehydrogenase immobilized on silica sol-gel modified gold electrode and its application. , 2007, Biosensors & bioelectronics.

[5]  Theodoros E. Karakasidis,et al.  Multiscale modeling in nanomaterials science , 2007 .

[6]  Richard D. Braatz,et al.  Erratum: Effect of Additives on Shape Evolution during Electrodeposition: I. Multiscale Simulation with Dynamically Coupled Kinetic Monte Carlo and Moving-Boundary Finite-Volume Codes [ J. Electrochem. Soc. , 154 , D230 (2007) ] , 2007 .

[7]  Richard D. Braatz,et al.  Effect of Additives on Shape Evolution during Electrodeposition I. Multiscale Simulation with Dynamically Coupled Kinetic Monte Carlo and Moving-Boundry Finite-Volume Codes , 2007 .

[8]  A. Martucci,et al.  Porous sol gel silica films doped with crystalline NiO nanoparticles for gas sensing applications , 2006 .

[9]  F. Tay,et al.  Functionalized mesoporous silica films for gas sensing applications , 2006 .

[10]  C. Brinker,et al.  Morphological control of surfactant-templated metal oxide films , 2006 .

[11]  J. Mugnier,et al.  Synthesis and characterisation of tantalum-incorporating silica hybrid sol gel thin films for optical applications , 2006 .

[12]  Helmut Bretinger,et al.  Structure and properties of low-n mesoporous silica films for optical applications , 2006 .

[13]  S. Mohan,et al.  Development of acetylcholinesterase silica sol-gel immobilized biosensor--an application towards oxydemeton methyl detection. , 2004, Biosensors & bioelectronics.

[14]  Alessandro Martucci,et al.  Nanostructured sol–gel silica thin films doped with NiO and SnO2 for gas sensing applications , 2004 .

[15]  LiIO3/SiO2 nanocomposite for quadratic non-linear optical applications , 2004 .

[16]  S. Tolbert,et al.  Highly polarized luminescence from optical quality films of a semiconducting polymer aligned within oriented mesoporous silica. , 2004, Journal of the American Chemical Society.

[17]  A. Dollet Multiscale modeling of CVD film growth—a review of recent works , 2004 .

[18]  David L. Ma,et al.  Coupled mesoscale—continuum simulations of copper electrodeposition in a trench , 2004 .

[19]  Panagiotis D. Christofides,et al.  Feedback control of growth rate and surface roughness in thin film growth , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[20]  S. Rankin,et al.  Monte Carlo Simulations of Size and Structure of Gel Precursors in Silica Polycondensation , 2003 .

[21]  Dionisios G. Vlachos,et al.  Recent developments on multiscale, hierarchical modeling of chemical reactors , 2002 .

[22]  David Anthony Barrow,et al.  Ceramic sol–gel composite coatings for electrical insulation , 2001 .

[23]  G. Verros,et al.  Finite element analysis of polymeric membrane and coating formation by solvent evaporation , 2001 .

[24]  Jeanne E. Pemberton,et al.  Novel Silicon Dioxide Sol-Gel Films for Potential Sensors Applications: A Surface Plasmon Resonance Study , 2001 .

[25]  Brian J. Melde,et al.  Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age , 2000 .

[26]  C. Macosko,et al.  Dynamic Monte Carlo Simulation of Gelation with Extensive Cyclization , 2000 .

[27]  A. McCormick,et al.  Hydrolysis pseudoequilibrium: Challenges and opportunities to sol-gel silicate kinetics , 2000 .

[28]  Helen H. Lou,et al.  Integrated Modeling and Simulation for Improved Reactive Drying of Clearcoat , 2000 .

[29]  Björn Karlsson,et al.  Optical and mechanical properties of sol-gel antireflective films for solar energy applications , 1999 .

[30]  A. McCormick,et al.  Similarities in the hydrolysis pseudoequilibrium behavior of methyl-substituted ethoxysilanes , 1999 .

[31]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[32]  K. Jensen,et al.  MULTISCALE MODELING OF THIN FILM GROWTH , 1998 .

[33]  C. Macosko,et al.  Importance of Cyclization during the Condensation of Hydrolyzed Alkoxysilanes , 1998 .

[34]  C. Macosko,et al.  Sol‐gel polycondensation kinetic modeling: Methylethoxysilanes , 1998 .

[35]  C. Allain,et al.  Drying kinetics of polymer films , 1998 .

[36]  J. L. Duda,et al.  DRYING OF SOLVENT COATED POLYMER FILMS , 1998 .

[37]  C. Macosko,et al.  Modeling of first shell substitution effects and preferred cyclization in sol-gel polymerization , 1997 .

[38]  A. McCormick,et al.  29Si NMR Kinetic Study of Tetraethoxysilane and Ethyl-Substituted Ethoxysilane Polymerization in Acidic Conditions , 1996 .

[39]  L. E. Scriven,et al.  Predicting drying in coatings that react and gel : Drying regime maps , 1996 .

[40]  C. Macosko,et al.  Formation of Cagelike Intermediates from Nonrandom Cyclization during Acid-Catalyzed Sol-Gel Polymerization of Tetraethyl Orthosilicate , 1995 .

[41]  J. S. Vrentas,et al.  Drying of solvent-coated polymer films , 1994 .

[42]  P. Tanguy,et al.  A new free surface model for the dip coating process , 1993 .

[43]  B. D. Kay,et al.  The chemical kinetics of silicate sol—gels: Functional group kinetics of tetraethoxysilane , 1993 .

[44]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[45]  C. Macosko,et al.  Modeling the gelation of silicon alkoxides , 1990 .

[46]  B. D. Kay,et al.  Sol−gel kinetics. II: Chemical speciation modeling , 1988 .

[47]  B. D. Kay,et al.  Sol-gel kinetics I. Functional group kinetics☆ , 1988 .

[48]  J. Boilot,et al.  Kinetic simulations and mechanisms of the sol−gel polymerization , 1987 .

[49]  J. Vergnaud,et al.  Modelling of drying of coatings: Effect of the thickness, temperature and concentration of solvent , 1987 .

[50]  R. L. Cerro,et al.  Rapid Free Surface Film Flows. An Integral Approach , 1980 .

[51]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[52]  W. Stockmayer Theory of Molecular Size Distribution and Gel Formation in Branched Polymers II. General Cross Linking , 1944 .

[53]  Walter H. Stockmayer,et al.  Theory of Molecular Size Distribution and Gel Formation in Branched‐Chain Polymers , 1943 .

[54]  Paul J. Flory,et al.  Molecular Size Distribution in Three Dimensional Polymers. I. Gelation1 , 1941 .