New lower bounds for probabilistic degree and AC0 with parity gates

We prove new lower bounds for computing some functions f : {0, 1} → {0, 1} in ENP by polynomials modulo 2, constant-depth circuits with parity gates (AC0[⊕]), and related classes. Results include: (1) Ω(n/ log n) lower bounds probabilistic degree. This is optimal up to a factor O(log n). The previous best lower bound was Ω( √ n) proved in the 80’s by Razborov and Smolensky. (2) exp(Ω(n/ log n)1/(h−1)) lower bounds on the size of depth-h AC0[⊕] circuits, for any h. This almost matches the exp(Ω(n1/(h−1))) lower bounds for AC0 by H̊astad. The previous best lower bound was exp(Ω(n1/(h+1))) by Rajgopal, Santhanam, and Srinivasan who recently improved Razborov and Smolensky’s exp(Ω(n1/(2h−2))) bound. (3) (1/2 − (log s)/n) average-case hardness for size-s depth-h AC0[⊕] circuits under the uniform distribution, for say polynomial or quasi-polynomial s, and any fixed h. The previous best was (1/2− (log s)/ √ n). (4) any majority of t AC0[⊕] circuits, MAJt ◦ AC0[⊕], of size s and depth h, has t ≥ n2/ log(s), for any s, h. The previous best was t ≥ n/ log(s). (5) any AC[⊕]◦LTFt ◦AC0[⊕]◦LTF circuit, where LTF are threshold functions, has t ≥ n/ log(s), for any s, h. The previous best was t ≥ √ n/ log(s) recently proved by Alman and Chen. The mentioned previous best lower bounds in (1), (3), and (4) held for the Majority function. Each of the new lower bounds in this paper is false for Majority. For (2) and (5) the previous best held for ENP . The proofs build on Williams’ “guess-and-SAT” method. For (1) we show how to use a PCP by Ben-Sasson and Viola towards probabilistic-degree lower bounds. Results (2), (4), and (5) are then more or less automatic, as is (3) under a nonuniform distribution. To strengthen (3) to hold under the uniform distribution we use a different argument which combines the recent work by Alman and Chen with hardness amplification. A concurrent work by Chen and Ren obtains a result stronger than (3). ∗Supported by NSF CCF award 1813930. ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Report No. 15 (2020)

[1]  Emanuele Viola Lower bounds for data structures with space close to maximum imply circuit lower bounds , 2018, Electron. Colloquium Comput. Complex..

[2]  Lijie Chen,et al.  Strong Average-Case Circuit Lower Bounds from Non-trivial Derandomization , 2022, Electron. Colloquium Comput. Complex..

[3]  Emanuele Viola,et al.  Pseudorandom Bits for Polynomials , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[4]  Emanuele Viola,et al.  Short PCPs with Projection Queries , 2014, ICALP.

[5]  Ryan Williams,et al.  Natural proofs versus derandomization , 2012, STOC '13.

[6]  Stephen A. Cook,et al.  A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..

[7]  Ryan Williams,et al.  New algorithms and lower bounds for circuits with linear threshold gates , 2014, STOC.

[8]  Richard Ryan Williams,et al.  Stronger connections between circuit analysis and circuit lower bounds, via PCPs of proximity , 2019, CCC.

[9]  Srikanth Srinivasan,et al.  On the Probabilistic Degrees of Symmetric Boolean functions , 2019, Electron. Colloquium Comput. Complex..

[10]  Eli Ben-Sasson,et al.  Short PCPs with Polylog Query Complexity , 2008, SIAM J. Comput..

[11]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[12]  Noam Nisan,et al.  On Yao's XOR-Lemma , 1995, Electron. Colloquium Comput. Complex..

[13]  Alexander Golovnev,et al.  Circuit Depth Reductions , 2018, Electron. Colloquium Comput. Complex..

[14]  Henning Wunderlich On a Theorem of Razborov , 2011, computational complexity.

[15]  Shachar Lovett,et al.  Unconditional pseudorandom generators for low degree polynomials , 2008, Theory Comput..

[16]  Noam Nisan,et al.  BPP has subexponential time simulations unless EXPTIME has publishable proofs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[17]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[18]  Emanuele Viola,et al.  Indistinguishability by Adaptive Procedures with Advice, and Lower Bounds on Hardness Amplification Proofs , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[19]  Emanuele Viola,et al.  New correlation bounds for GF(2) polynomials using Gowers uniformity , 2006, Electron. Colloquium Comput. Complex..

[20]  Emanuele Viola Challenges in computational lower bounds , 2013, Electron. Colloquium Comput. Complex..

[21]  Timothy M. Chan,et al.  Polynomial Representations of Threshold Functions and Algorithmic Applications , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[22]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[23]  Srikanth Srinivasan,et al.  On Improved Degree Lower Bounds for Polynomial Approximation , 2013, FSTTCS.

[24]  Orr Paradise,et al.  Smooth and Strong PCPs , 2021, Electron. Colloquium Comput. Complex..

[25]  Cody Murray,et al.  Circuit lower bounds for nondeterministic quasi-polytime: an easy witness lemma for NP and NQP , 2018, Electron. Colloquium Comput. Complex..

[26]  Emanuele Viola,et al.  Hardness amplification proofs require majority , 2008, SIAM J. Comput..

[27]  Satyanarayana V. Lokam Complexity Lower Bounds using Linear Algebra , 2009, Found. Trends Theor. Comput. Sci..

[28]  Richard Ryan Williams,et al.  Probabilistic rank and matrix rigidity , 2016, STOC.

[29]  Suguru Tamaki,et al.  A Satisfiability Algorithm for Depth Two Circuits with a Sub-Quadratic Number of Symmetric and Threshold Gates , 2016, Electron. Colloquium Comput. Complex..

[30]  Emanuele Viola,et al.  On the Power of Small-Depth Computation , 2009, Found. Trends Theor. Comput. Sci..

[31]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[32]  Johan Håstad,et al.  On the power of small-depth threshold circuits , 1991, computational complexity.

[33]  Emanuele Viola,et al.  On beating the hybrid argument , 2012, ITCS '12.

[34]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[35]  Igor Carboni Oliveira,et al.  Parity helps to compute majority , 2019, Electron. Colloquium Comput. Complex..

[36]  Rocco A. Servedio,et al.  On a special case of rigidity , 2012, Electron. Colloquium Comput. Complex..

[37]  R. Smolensky On representations by low-degree polynomials , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[38]  Stanislav Zák,et al.  A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..

[39]  Ryan Williams Nonuniform ACC Circuit Lower Bounds , 2014, JACM.

[40]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[41]  Huacheng Yu,et al.  More Applications of the Polynomial Method to Algorithm Design , 2015, SODA.

[42]  Rahul Santhanam,et al.  Deterministically Counting Satisfying Assignments for Constant-Depth Circuits with Parity Gates, with Implications for Lower Bounds , 2018, MFCS.

[43]  Ryan Williams,et al.  Probabilistic Polynomials and Hamming Nearest Neighbors , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[44]  Shachar Lovett,et al.  Pseudorandom Generators from Polarizing Random Walks , 2018, Electron. Colloquium Comput. Complex..

[45]  Ran Raz,et al.  The BNS-Chung criterion for multi-party communication complexity , 2000, computational complexity.

[46]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[47]  Lijie Chen,et al.  Non-deterministic Quasi-Polynomial Time is Average-Case Hard for ACC Circuits , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[48]  Michael E. Saks,et al.  Time-space trade-off lower bounds for randomized computation of decision problems , 2003, JACM.

[49]  Noam Nisan,et al.  Pseudorandom bits for constant depth circuits , 1991, Comb..

[50]  Andrew Chi-Chih Yao,et al.  ON ACC and threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[51]  Pavel Pudlák,et al.  Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[52]  Fan Chung Graham,et al.  Communication Complexity and Quasi Randomness , 1993, SIAM J. Discret. Math..

[53]  A CookStephen A hierarchy for nondeterministic time complexity , 1973 .

[54]  Zeev Dvir,et al.  Static data structure lower bounds imply rigidity , 2018, Electron. Colloquium Comput. Complex..

[55]  Miklós Ajtai,et al.  A non-linear time lower bound for Boolean branching programs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[56]  Josh Alman,et al.  Efficient Construction of Rigid Matrices Using an NP Oracle , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[57]  Ryan Williams,et al.  Lower Bounds Against Sparse Symmetric Functions of ACC Circuits: Expanding the Reach of $\#$SAT Algorithms , 2020, STACS.

[58]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[59]  Richard Ryan Williams,et al.  Limits on representing Boolean functions by linear combinations of simple functions: thresholds, ReLUs, and low-degree polynomials , 2018, CCC.

[60]  Timothy M. Chan,et al.  Deterministic APSP, Orthogonal Vectors, and More: Quickly Derandomizing Razborov-Smolensky , 2016, SODA.

[61]  A. Razborov Communication Complexity , 2011 .

[62]  Emanuele Viola The Sum of d Small-Bias Generators Fools Polynomials of Degree d , 2008, Computational Complexity Conference.

[63]  Russell Impagliazzo,et al.  Hard-core distributions for somewhat hard problems , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[64]  Emanuele Viola Matching Smolensky's correlation bound with majority , 2019, Electron. Colloquium Comput. Complex..

[65]  Avishay Tal,et al.  Rigid Matrices From Rectangular PCPs or: Hard Claims Have Complex Proofs , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[66]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[67]  Ryan Williams Guest column: a casual tour around a circuit complexity bound , 2011, SIGA.

[68]  Huacheng Yu,et al.  Beating Brute Force for Systems of Polynomial Equations over Finite Fields , 2017, SODA.

[69]  Igor Carboni Oliveira,et al.  An Average-Case Lower Bound Against \mathsf ACC^0 ACC 0 , 2018, LATIN.

[70]  Adam R. Klivans On the Derandomization of Constant Depth Circuits , 2001, RANDOM-APPROX.

[71]  Shachar Lovett,et al.  Pseudorandom generators from the second Fourier level and applications to AC0 with parity gates , 2018, Electron. Colloquium Comput. Complex..

[72]  S. Vadhan,et al.  The complexity of hardness amplification and derandomization , 2006 .

[73]  Eli Ben-Sasson,et al.  Short PCPs verifiable in polylogarithmic time , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[74]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[75]  Ryan Williams,et al.  Improving exhaustive search implies superpolynomial lower bounds , 2010, STOC '10.

[76]  Swastik Kopparty,et al.  Certifying Polynomials for $\mathrm{AC}^0[\oplus]$ circuits, with applications , 2012, Electron. Colloquium Comput. Complex..

[77]  Emanuele Viola Constant-Error Pseudorandomness Proofs from Hardness Require Majority , 2018, Electron. Colloquium Comput. Complex..

[78]  Peter Bro Miltersen,et al.  On data structures and asymmetric communication complexity , 1994, STOC '95.

[79]  Cyrus Rashtchian,et al.  Equivalence of Systematic Linear Data Structures and Matrix Rigidity , 2019, Electron. Colloquium Comput. Complex..

[80]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[81]  Henry Corrigan-Gibbs,et al.  The Function-Inversion Problem: Barriers and Opportunities , 2019, Electron. Colloquium Comput. Complex..

[82]  Emanuele Viola,et al.  Norms, XOR Lemmas, and Lower Bounds for Polynomials and Protocols , 2008, Theory Comput..