A numerical method for the ternary Cahn--Hilliard system with a degenerate mobility

We applied a second-order conservative nonlinear multigrid method for the ternary Cahn-Hilliard system with a concentration dependent degenerate mobility for a model for phase separation in a ternary mixture. First, we used a standard finite difference approximation for spatial discretization and a Crank-Nicolson semi-implicit scheme for the temporal discretization. Then, we solved the resulting discretized equations using an efficient nonlinear multigrid method. We proved stability of the numerical solution for a sufficiently small time step. We demonstrate the second-order accuracy of the numerical scheme. We also show that our numerical solutions of the ternary Cahn-Hilliard system are consistent with the exact solutions of the linear stability analysis results in a linear regime. We demonstrate that the multigrid solver can straightforwardly deal with different boundary conditions such as Neumann, periodic, mixed, and Dirichlet. Finally, we describe numerical experiments highlighting differences of constant mobility and degenerate mobility in one, two, and three spatial dimensions.

[1]  D. Furihata,et al.  Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .

[2]  Charles M. Elliott,et al.  Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .

[3]  John W. Cahn,et al.  Spinodal decomposition in ternary systems , 1971 .

[4]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[5]  John W. Barrett,et al.  Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy , 1997 .

[6]  Harald Garcke,et al.  On Fully Practical Finite Element Approximations of Degenerate Cahn-Hilliard Systems , 2001 .

[7]  M. I. M. Copetti Numerical experiments of phase separation in ternary mixtures , 2000 .

[8]  David J. Eyre,et al.  Systems of Cahn-Hilliard Equations , 1993, SIAM J. Appl. Math..

[9]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[10]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[11]  Zhi-zhong Sun,et al.  A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation , 1995 .

[12]  Junseok Kim,et al.  CONSERVATIVE MULTIGRID METHODS FOR TERNARY CAHN-HILLIARD SYSTEMS ∗ , 2004 .

[13]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[14]  José Francisco Rodrigues,et al.  Mathematical Models for Phase Change Problems , 1989 .

[15]  Thomas Wanner,et al.  Spinodal Decomposition for Multicomponent Cahn–Hilliard Systems , 2000 .

[16]  Donald A. French,et al.  Continuous finite element methods which preserve energy properties for nonlinear problems , 1990 .

[17]  Charles M. Elliott,et al.  `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .

[18]  Charles M. Elliott,et al.  Numerical analysis of a model for phase separation of a multi- component alloy , 1996 .

[19]  John W. Barrett,et al.  Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility , 1999, Math. Comput..

[20]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .