4-2011 Bayesian Nonparametric Inference of Switching Linear Dynamical Systems

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  W. Marsden I and J , 2012 .

[3]  Emily B. Fox,et al.  Bayesian nonparametric learning of complex dynamical phenomena , 2009 .

[4]  Michael I. Jordan,et al.  An HDP-HMM for systems with state persistence , 2008, ICML '08.

[5]  René Vidal,et al.  Realization theory of stochastic jump-Markov linear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[6]  Alan S. Willsky,et al.  Hierarchical Dirichlet processes for tracking maneuvering targets , 2007, 2007 10th International Conference on Information Fusion.

[7]  Kevin P. Murphy,et al.  Modeling changing dependency structure in multivariate time series , 2007, ICML '07.

[8]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[9]  Zacharias Psaradakis,et al.  Joint Determination of the State Dimension and Autoregressive Order for Models with Markov Regime Switching , 2006 .

[10]  A. Megretski,et al.  Model reduction of discrete-time Markov jump linear systems , 2006, 2006 American Control Conference.

[11]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[12]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, ACM Trans. Graph..

[13]  Yi Ma,et al.  Identification of hybrid linear time-invariant systems via subspace embedding and segmentation (SES) , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[14]  S. Sastry,et al.  An algebraic geometric approach to the identification of a class of linear hybrid systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[15]  S. Sastry,et al.  Generalized principal component analysis (GPCA) , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[16]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[17]  R. Vidal,et al.  Observability and identifiability of jump linear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[18]  Terrence J. Sejnowski,et al.  Variational Learning for Switching State-Space Models , 2001 .

[19]  Brian D. O. Anderson,et al.  The Realization Problem for Hidden Markov Models , 1999, Math. Control. Signals Syst..

[20]  R. Kohn,et al.  Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .

[21]  Chang‐Jin Kim,et al.  Dynamic linear models with Markov-switching , 1994 .

[22]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[23]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[24]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[25]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[26]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[27]  H. Akaike A new look at the statistical model identification , 1974 .

[28]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .