Using Gaussian-Uniform Mixture Models for Robust Time-Interval Measurement

Time-interval measurement systems using threshold detectors experience severe performance degradation in the presence of noise and interference. This paper describes an approach to robust measurement of time intervals in the presence of interference. This approach is based on modeling the distribution of the measurement results as a Gaussian-uniform mixture. A batch maximum-likelihood and a recursive particle filtering estimator are implemented, which incorporate the above model. The accuracy and robustness of the approach are evaluated by numerical simulations and by comparison with the Cramér-Rao lower bound. Finally, as a case study, the approach is applied to the experimental data obtained from an in-house developed ultrawideband time-interval measurement system.

[1]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[2]  Moe Z. Win,et al.  Cooperative Localization in Wireless Networks , 2009, Proceedings of the IEEE.

[3]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  Emiliano Sisinni,et al.  Low Complexity UWB Radios for Precise Wireless Sensor Network Synchronization , 2013, IEEE Transactions on Instrumentation and Measurement.

[6]  Mark D. Semon,et al.  POSTUSE REVIEW: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1982 .

[7]  M.Z. Win,et al.  Monte Carlo localization in dense multipath environments using UWB ranging , 2005, 2005 IEEE International Conference on Ultra-Wideband.

[8]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[9]  Marco Dionigi,et al.  A 5.6-GHz UWB Position Measurement System , 2013, IEEE Transactions on Instrumentation and Measurement.

[10]  R.L. Moses,et al.  Locating the nodes: cooperative localization in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[11]  Sumeetpal S. Singh,et al.  Novel particle filter methods for recursive and batch maximum likelihood parameter estimation in general states space models , 2005 .

[12]  R. Thompson A Note on Restricted Maximum Likelihood Estimation with an Alternative Outlier Model , 1985 .

[13]  Alessio De Angelis,et al.  A particle filter for robust calibration of RF ranging systems , 2014, 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings.

[14]  D. Massart,et al.  The Mahalanobis distance , 2000 .

[15]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[16]  Adrian E. Raftery,et al.  Normal uniform mixture differential gene expression detection for cDNA microarrays , 2005, BMC Bioinformatics.

[17]  Nirvana Meratnia,et al.  Outlier Detection Techniques for Wireless Sensor Networks: A Survey , 2008, IEEE Communications Surveys & Tutorials.

[18]  Michael Pecht,et al.  A residual estimation based approach for isolating faulty parameters , 2009, 2009 IEEE Aerospace conference.

[19]  Eric Moulines,et al.  On the use of particle filtering for maximum likelihood parameter estimation , 2005, 2005 13th European Signal Processing Conference.

[20]  Peter Händel,et al.  Ranging without time stamps exchanging , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  Alessio De Angelis,et al.  Ranging results using a UWB platform in an indoor environment , 2013, 2013 International Conference on Localization and GNSS (ICL-GNSS).

[22]  J. Stevens,et al.  Outliers and influential data points in regression analysis. , 1984 .

[23]  Guoliang Fan,et al.  A New Centralized Sensor Fusion-Tracking Methodology Based on Particle Filtering for Power-Aware Systems , 2008, IEEE Transactions on Instrumentation and Measurement.

[24]  Alessio De Angelis,et al.  Schedule-based sequential localization in asynchronous wireless networks , 2014, EURASIP J. Adv. Signal Process..

[25]  Alessio De Angelis,et al.  Characterization of a Flexible UWB Sensor for Indoor Localization , 2013, IEEE Transactions on Instrumentation and Measurement.

[26]  John R. Taylor Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements, 2nd Edition , 1997 .

[27]  Stefan Schaal,et al.  A Kalman filter for robust outlier detection , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[29]  Gongguo Tang,et al.  Multiobjective Optimization of OFDM Radar Waveform for Target Detection , 2011, IEEE Transactions on Signal Processing.

[30]  Paolo Carbone,et al.  Estimation of the Calibration Parameters for an UWB Indoor Positioning System , 2010 .

[31]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[32]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[33]  Thomas B. Schon,et al.  Tightly coupled UWB/IMU pose estimation , 2009, 2009 IEEE International Conference on Ultra-Wideband.

[34]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[35]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[36]  Michael Muma,et al.  Robust Estimation in Signal Processing: A Tutorial-Style Treatment of Fundamental Concepts , 2012, IEEE Signal Processing Magazine.