Characterization of point defects in CdTe by positron annihilation spectroscopy

Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

[1]  B. Sanyal,et al.  High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies , 2016 .

[2]  W. Egger,et al.  Positron annihilation lifetime spectroscopy study of Kapton thin foils , 2016 .

[3]  K. Durose,et al.  Long Lifetime Hole Traps at Grain Boundaries in CdTe Thin-Film Photovoltaics. , 2015, Physical review letters.

[4]  B. Sanyal,et al.  Small hole polaron in CdTe: Cd-vacancy revisited , 2015, Scientific Reports.

[5]  Marc Torrent,et al.  Two-component density functional theory within the projector augmented-wave approach: Accurate and self-consistent computations of positron lifetimes and momentum distributions , 2015 .

[6]  B. Sanyal,et al.  Cl-doping of Te-rich CdTe: Complex formation, self-compensation and self-purification from first principles , 2015 .

[7]  W. Orellana,et al.  Tellurium vacancy in cadmium telluride revisited: Size effects in the electronic properties , 2015, 1505.06797.

[8]  Filip Tuomisto,et al.  Defect identification in semiconductors with positron annihilation: Experiment and theory , 2013 .

[9]  B. Sanyal,et al.  Tailoring of defect levels by deformations: Te-antisite in CdTe , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Xiaoyan Liang,et al.  Study on Cd vacancy in CdZnTe Crystal by Positron Annihilation Technology , 2013 .

[11]  P. Erhart,et al.  Contributions of point defects, chemical disorder, and thermal vibrations to electronic properties of Cd1-xZnxTe alloys , 2012, 1210.3305.

[12]  T. Ohdaira,et al.  Production and Applications of Intense Pulsed, Slow Positron Beams , 2012 .

[13]  Linjun Wang,et al.  Influence of Free-space Volume in Ampoule on Defects of CdZnTe Crystal Grown by Bridgman Method: Influence of Free-space Volume in Ampoule on Defects of CdZnTe Crystal Grown by Bridgman Method , 2012 .

[14]  J. T. Mullins,et al.  Growth by the Multi-tube Physical Vapour Transport method and characterisation of bulk (Cd,Zn)Te , 2012 .

[15]  K. Schreckenbach,et al.  The NEPOMUC upgrade and advanced positron beam experiments , 2012 .

[16]  K. Durose,et al.  Vacancy defects in CdTe thin films , 2011 .

[17]  David J. Singh,et al.  Vibrational signatures of OTe and OTe–VCd in CdTe: A first-principles study , 2010 .

[18]  A. Tagantsev,et al.  Cation-site intrinsic defects in Zn-doped CdTe , 2010 .

[19]  D. Keeble,et al.  Positron lifetimes of polycrystalline metals : A positron source correction study , 2006 .

[20]  T. Eirola,et al.  Three real‐space discretization techniques in electronic structure calculations , 2006, cond-mat/0601201.

[21]  S. Neretina,et al.  Defect Characterization of CdTe Bulk Crystals Doped with Heavy Elements and Rare Earths , 2005 .

[22]  M. Martyniuk,et al.  Investigation of the defect structure in Cd1−xZnxTe by positron lifetime spectroscopy , 2001 .

[23]  J. T. Mullins,et al.  A novel “multi-tube” vapour growth system and its application to the growth of bulk crystals of cadmium telluride , 2000 .

[24]  P. Mascher,et al.  Point defect characterization of Zn- and Cd-based semiconductors using positron lifetime spectroscopy , 1999 .

[25]  P. J. Simpson,et al.  Defect Depth Profile in CdTe : CI by Positron Annihilation , 1999 .

[26]  R. Krause-Rehberg,et al.  Review of defect investigations by means of positron annihilation in II-VI compound semiconductors , 1998 .

[27]  P. Hautojärvi,et al.  Identification of cadmium vacancy complexes in CdTe(In), CdTe(Cl) and CdTe(I) by positron annihilation with core electrons , 1997 .

[28]  Korhonen,et al.  Calculation of positron states and annihilation in solids: A density-gradient-correction scheme. , 1996, Physical review. B, Condensed matter.

[29]  T. Torsti,et al.  Gradient correction for positron states in solids. , 1995, Physical review. B, Condensed matter.

[30]  R. Krause-Rehberg,et al.  Investigations of Vacancy Defects in CdTe by Means of Positron Annihilation , 1994 .

[31]  A. Seitsonen,et al.  Positron annihilation in II-VI compound semiconductors: theory , 1994 .

[32]  R. Triboulet,et al.  Positron trapping at native vacancies in CdTe crystals: In doping effect , 1993 .

[33]  M. Ikeda,et al.  Isoelectronic oxygen in II‐VI semiconductors , 1992 .

[34]  R. Triboulet,et al.  Positron trapping in vacancies in indium doped CdTe crystals , 1991 .

[35]  Nieminen,et al.  Positron trapping in semiconductors. , 1990, Physical review. B, Condensed matter.

[36]  Saarinen,et al.  Shallow positron traps in GaAs. , 1989, Physical review. B, Condensed matter.

[37]  R. Nieminen,et al.  Electron-positron density-functional theory. , 1986, Physical review. B, Condensed matter.

[38]  E. Pajanne,et al.  Electron liquid in collective description. III. Positron annihilation , 1979 .