Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas.

[1]  P. Sminia,et al.  Reirradiation tolerance of the human brain. , 2008, International journal of radiation oncology, biology, physics.

[2]  L. Stalpers,et al.  Reduction of overall treatment time in patients irradiated for more than three brain metastases. , 2007, International journal of radiation oncology, biology, physics.

[3]  D. Rades,et al.  Whole‐brain radiotherapy versus stereotactic radiosurgery for patients in recursive partitioning analysis classes 1 and 2 with 1 to 3 brain metastases , 2007, Cancer.

[4]  M. Bent,et al.  The incidence of pseudo-progression in a cohort of malignant glioma patients treated with chemo-radiation with temozolomide , 2007 .

[5]  S. Ahmed,et al.  Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: A potential rat model of vascular dementia , 2007, Journal of the Neurological Sciences.

[6]  Hong Liu,et al.  Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. , 2007, International journal of radiation oncology, biology, physics.

[7]  H. Rodemann,et al.  Responses of normal cells to ionizing radiation. , 2007, Seminars in radiation oncology.

[8]  Andrew E. Sloan,et al.  Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma , 2007, Journal of Neuro-Oncology.

[9]  V. Levin,et al.  Effect of bevacizumab on radiation necrosis of the brain. , 2007, International journal of radiation oncology, biology, physics.

[10]  K. Aldape,et al.  Temozolomide-Mediated Radiation Enhancement in Glioblastoma: A Report on Underlying Mechanisms , 2006, Clinical Cancer Research.

[11]  J. Ruben,et al.  Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. , 2006, International journal of radiation oncology, biology, physics.

[12]  D. Hallahan,et al.  Protein kinase B/Akt-dependent phosphorylation of glycogen synthase kinase-3beta in irradiated vascular endothelium. , 2006, Cancer research.

[13]  R. Schmidt,et al.  Cancer therapy-associated CNS neuropathology: an update and review of the literature , 2006, Acta Neuropathologica.

[14]  D. Moody,et al.  Vascular Damage after Fractionated Whole-Brain Irradiation in Rats , 2005, Radiation research.

[15]  W. Koch,et al.  Positron Emission Tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus Magnetic Resonance Imaging in the Diagnosis of Recurrent Gliomas , 2005, Neurosurgery.

[16]  L. Deangelis,et al.  Treatment of primary central nervous system lymphoma. , 2005, Hematology/oncology clinics of North America.

[17]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[18]  R. Mulhern,et al.  White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  A. J. van der Kogel,et al.  Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. , 2004, Molecular interventions.

[20]  Amar Gajjar,et al.  Late neurocognitive sequelae in survivors of brain tumours in childhood. , 2004, The Lancet. Oncology.

[21]  A. Grosu,et al.  Radiotherapy for High-Grade Gliomas , 2004, Strahlentherapie und Onkologie.

[22]  M. Morino,et al.  Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery —In malignant glioma— , 2004, Annals of nuclear medicine.

[23]  M. Pintilie,et al.  Hypoxia and Hypoxia-Inducible Factor-1 Target Genes in Central Nervous System Radiation Injury , 2004, Clinical Cancer Research.

[24]  T. Mikkelsen,et al.  Associations among Magnetic Resonance Spectroscopy, Apparent Diffusion Coefficients, and Image-Guided Histopathology with Special Attention to Radiation Necrosis , 2004, Neurosurgery.

[25]  E. B. Butler,et al.  Hypofractionated intensity-modulated radiotherapy for primary glioblastoma multiforme. , 2004, International journal of radiation oncology, biology, physics.

[26]  C. Eskey,et al.  Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. , 2004, AJNR. American journal of neuroradiology.

[27]  K. Hole,et al.  Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[28]  Paul Chen,et al.  Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. , 2003, Cancer research.

[29]  S. Leung,et al.  Diffusion-Weighted Magnetic Resonance Imaging in Radiation-Induced Cerebral Necrosis: Apparent Diffusion Coefficient in Lesion Components , 2003, Journal of computer assisted tomography.

[30]  M. Gilbert,et al.  Cerebral Radiation Necrosis , 2003, The neurologist.

[31]  M. Oka,et al.  MRI in methotrexate-related leukoencephalopathy: Disseminated necrotising leukoencephalopathy in comparison with mild leukoencephalopathy , 2003, Neuroradiology.

[32]  Donald W Kufe,et al.  Vascular Endothelial Growth Factor Enhances Endothelial Cell Survival and Tumor Radioresistance , 2002, Cancer journal.

[33]  W Budach,et al.  Radiation induced CNS toxicity – molecular and cellular mechanisms , 2001, British Journal of Cancer.

[34]  M. Middleton,et al.  Temozolomide: a novel oral alkylating agent , 2001, Expert review of anticancer therapy.

[35]  L. Deangelis,et al.  Treatment for primary CNS lymphoma: the next step. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  J. Fike,et al.  The Radioresponse of the Central Nervous System: A Dynamic Process , 2000, Radiation research.

[37]  D. Green,et al.  Role of Acidic Sphingomyelinase in Fas/CD95-mediated Cell Death* , 2000, The Journal of Biological Chemistry.

[38]  Wan Ariffin Bin Abdullah,et al.  Med Pediatr Oncol , 1999 .

[39]  Pat Kumar,et al.  Radiation‐induced normal tissue injury: Role of adhesion molecules in leukocyte–endothelial cell interactions , 1999, International journal of cancer.

[40]  Ning Zhang,et al.  Ataxia Telangiectasia-mutated Gene Product Inhibits DNA Damage-induced Apoptosis via Ceramide Synthase* , 1999, The Journal of Biological Chemistry.

[41]  J. Blay,et al.  High-dose methotrexate for the treatment of primary cerebral lymphomas: analysis of survival and late neurologic toxicity in a retrospective series. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[42]  B. Drayer,et al.  Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? , 1998, AJNR. American journal of neuroradiology.

[43]  M. Skalej,et al.  CNS late effects after ALL therapy in childhood. Part I: Neuroradiological findings in long-term survivors of childhood ALL--an evaluation of the interferences between morphology and neuropsychological performance. The German Late Effects Working Group. , 1997, Medical and pediatric oncology.

[44]  Susan M. Chang,et al.  Reirradiation of primary CNS tumors. , 1996, International journal of radiation oncology, biology, physics.

[45]  F. Bova,et al.  Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors. , 1994, International journal of radiation oncology, biology, physics.

[46]  J. Menten,et al.  Accelerated radiotherapy in glioblastoma multiforme: a dose searching prospective study. , 1994, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[47]  John Calvin Reed,et al.  Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. , 1994, Oncogene.

[48]  J. Michaeli,et al.  Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. , 1994, Cancer research.

[49]  J. Schwartz,et al.  Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. , 1994, Cancer research.

[50]  M. Verheij,et al.  Ionizing radiation enhances platelet adhesion to the extracellular matrix of human endothelial cells by an increase in the release of von Willebrand factor. , 1994, Radiation research.

[51]  M A Moerland,et al.  Brain tumor delineation based on CT and MR imaging. Implications for radiotherapy treatment planning. , 1993, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[52]  R. Zimmerman,et al.  Early cystic/necrotic changes after hyperfractionated radiation therapy in children with brain stem gliomas data from the childrens cancer group , 1993, Cancer.

[53]  M. Goitein,et al.  Tolerance of normal tissue to therapeutic irradiation. , 1991, International journal of radiation oncology, biology, physics.

[54]  M. A. Bell,et al.  Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. , 1990, AJNR. American journal of neuroradiology.

[55]  B. Kleinschmidt-DeMasters,et al.  Pathology of high-dose intraarterial BCNU. , 1989, Surgical neurology.

[56]  P. W. Lee,et al.  Cerebral radionecrosis: is surgery necessary? , 1987, Journal of neurology, neurosurgery, and psychiatry.

[57]  M. Langer,et al.  [Reversible computed tomographic changes following brain tumor irradiation induced by the "early-delayed reaction" after radiation]. , 1986, Der Radiologe.

[58]  J. Marks,et al.  Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. , 1981, International journal of radiation oncology, biology, physics.

[59]  V. Smith,et al.  Therapeutic irradiation and brain injury. , 1980, International journal of radiation oncology, biology, physics.

[60]  E. Alexander,et al.  Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. , 1978, Journal of neurosurgery.

[61]  J. Bataini,et al.  Radiation‐induced cranial nerve palsy , 1977, Cancer.

[62]  J. Posner,et al.  Rapid‐course radiation therapy of cerebral metastases: Results and complications , 1974, Cancer.

[63]  A. Verma MGMT Gene Silencing and Benefit From Temozolomide in GlioblastomaHegi ME, Diserens A-C, Gorlia T, et al (Univ Hosp Lausanne, Switzerland; Univ Hosp Geneva; Swiss Inst for Experimental Cancer Research, Epalinges, Switzerland; et al) N Engl J Med 352:997–1003, 2005§ , 2006 .

[64]  P. Box Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression , 2005 .

[65]  R. Soffietti,et al.  Delayed adverse effects after irradiation of gliomas: clinicopathological analysis , 2005, Journal of Neuro-Oncology.

[66]  A. Grosu,et al.  Radiotherapy for high-grade gliomas. Does altered fractionation improve the outcome? , 2004, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[67]  M. Mayberg,et al.  Effects of radiation on cerebral vasculature: a review. , 2000, Neurosurgery.

[68]  A. J. Kumar,et al.  Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. , 2000, Radiology.

[69]  M. McDermott,et al.  Interstitial brachytherapy for malignant brain tumors. , 1998, Seminars in surgical oncology.

[70]  Y. F. Poon,et al.  Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma. , 1998, International journal of radiation oncology, biology, physics.

[71]  N. Newman,et al.  Radiation-induced optic neuropathy: characteristic appearances on gadolinium-enhanced MR. , 1992, AJNR. American journal of neuroradiology.

[72]  W. J. Oakes,et al.  Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma. , 1991, Medical and pediatric oncology.

[73]  H. Hirschberg,et al.  Reversible oedema and necrosis after irradiation of the brain. Diagnostic procedures and clinical manifestations. , 1990, Acta oncologica.

[74]  L. Robison,et al.  Influence of age, sex, and concurrent intrathecal methotrexate therapy on intellectual function after cranial irradiation during childhood: a report from the Children's Cancer Study Group. , 1990, Pediatric hematology and oncology.

[75]  M. Herman,et al.  Leukoencephalopathy following combined therapy of central nervous system leukemia and lymphoma. , 1975, Acta neuropathologica. Supplementum.

[76]  M. Herman,et al.  Leukoencephalopathy Following Combines Therapy of Central Nervous System Leukemia and Lymphoma , 1975 .

[77]  H. Resinger Radiation pathology. , 1962, Journal. Iowa State Medical Society.