Transforming unstructured natural language descriptions into measurable process performance indicators using Hidden Markov Models

Monitoring process performance is an important means for organizations to identify opportunities to improve their operations. The definition of suitable Process Performance Indicators (PPIs) is a crucial task in this regard. Because PPIs need to be in line with strategic business objectives, the formulation of PPIs is a managerial concern. Managers typically start out to provide relevant indicators in the form of natural language PPI descriptions. Therefore, considerable time and effort have to be invested to transform these descriptions into PPI definitions that can actually be monitored. This work presents an approach that automates this task. The presented approach transforms an unstructured natural language PPI description into a structured notation that is aligned with the implementation underlying a business process. To do so, we combine Hidden Markov Models and semantic matching techniques. A quantitative evaluation on the basis of a data collection obtained from practice demonstrates that our approach works accurately. Therefore, it represents a viable automated alternative to an otherwise laborious manual endeavor.

[1]  Michael Rosemann,et al.  Potential pitfalls of process modeling: part A , 2006, Bus. Process. Manag. J..

[2]  Erhard Rahm,et al.  Matching large schemas: Approaches and evaluation , 2007, Inf. Syst..

[3]  Manuel Resinas,et al.  PPINOT Tool Suite: A Performance Management Solution for Process-Oriented Organisations , 2013, ICSOC.

[4]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[5]  Fausto Giunchiglia,et al.  Semantic Matching , 2018, Encyclopedia of Database Systems.

[6]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[7]  Erhard Rahm,et al.  Target-driven merging of taxonomies with Atom , 2014, Inf. Syst..

[8]  Hajo A. Reijers,et al.  Detecting Inconsistencies Between Process Models and Textual Descriptions , 2015, BPM.

[9]  Beate List,et al.  Extending the EPC and the BPMN with Business Process Goals and Performance Measures , 2007, ICEIS.

[10]  Antonio Manuel Gutiérrez,et al.  Modelling Service Level Agreements for Business Process Outsourcing Services , 2015, CAiSE.

[11]  Felix T.S. Chan,et al.  Performance Measurement in a Supply Chain , 2003 .

[12]  Mathias Weske,et al.  Behavioral Similarity - A Proper Metric , 2011, BPM.

[13]  Hsinchun Chen,et al.  Matching knowledge elements in concept maps using a similarity flooding algorithm , 2006, Decis. Support Syst..

[14]  Viara Popova,et al.  Modeling organizational performance indicators , 2010, Inf. Syst..

[15]  Vittorio Castelli,et al.  Slot Filling through Statistical Processing and Inference Rules , 2009, TAC.

[16]  Sebastian Abeck,et al.  Towards a Model-driven Development of Monitored Processes , 2007, Wirtschaftsinformatik.

[17]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[18]  Manuel Resinas,et al.  Using templates and linguistic patterns to define process performance indicators , 2016, Enterp. Inf. Syst..

[19]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[20]  Mathias Weske,et al.  Efficient Consistency Measurement Based on Behavioral Profiles of Process Models , 2011, IEEE Transactions on Software Engineering.

[21]  Serena Sorrentino,et al.  Automatic generation of probabilistic relationships for improving schema matching , 2011, Inf. Syst..

[22]  Georg Grossmann,et al.  Formalising Natural Language Specifications Using a Cognitive Linguistics/Configuration Based Approach , 2013, 2013 17th IEEE International Enterprise Distributed Object Computing Conference.

[23]  Ganesh Vaidyanathan,et al.  A framework for evaluating third-party logistics , 2005, CACM.

[24]  Fiorenzo Franceschini,et al.  Management by Measurement: Designing Key Indicators and Performance Measurement Systems , 2007 .

[25]  Peter Loos,et al.  The Process Model Matching Contest 2015 , 2013, EMISA.

[26]  Alex Acero,et al.  Combination of CFG and n-gram modeling in semantic grammar learning , 2003, INTERSPEECH.

[27]  Wineke A. M. van Lent,et al.  Similarity of business process models : metrics and evaluation , 2009 .

[28]  Peter Kolb,et al.  DISCO: A Multilingual Database of Distributionally Similar Words , 2008 .

[29]  Hajo A. Reijers,et al.  Comparing textual descriptions to process models - The automatic detection of inconsistencies , 2017, Inf. Syst..

[30]  Carlos Pedrinaci,et al.  SENTINEL: a semantic business process monitoring tool , 2008, OBI '08.

[31]  Carlo Strapparava,et al.  Corpus-based and Knowledge-based Measures of Text Semantic Similarity , 2006, AAAI.

[32]  Matthias Weidlich,et al.  Matching Business Process Models Using Positional Passage-Based Language Models , 2013, ER.

[33]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[34]  Hajo A. Reijers,et al.  On the Fragmentation of Process Information: Challenges, Solutions, and Outlook , 2015, BMMDS/EMMSAD.

[35]  Fabio Casati,et al.  Analysis and improvement of business process models using spreadsheets , 2016, Inf. Syst..

[36]  R. Kaplan,et al.  The balanced scorecard--measures that drive performance. , 2015, Harvard business review.

[37]  Manuel Resinas,et al.  On the definition and design-time analysis of process performance indicators , 2013, Inf. Syst..

[38]  Andreas Kronz Managing of Process Key Performance Indicators as Part of the ARIS Methodology , 2006 .

[39]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[40]  Giuseppe Riccardi,et al.  How may I help you? , 1997, Speech Commun..

[41]  Ye-Yi Wang,et al.  Spoken language understanding , 2005, IEEE Signal Processing Magazine.

[42]  Camille Ben Achour Guiding Scenario Authoring , 1998 .

[43]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[44]  Elfriede Krauth,et al.  Performance Measurement and Control in Logistics Service Providing , 2005, ICEIS.

[45]  Diana Inkpen,et al.  Second Order Co-occurrence PMI for Determining the Semantic Similarity of Words , 2006, LREC.

[46]  Mathias Weske,et al.  Bridging abstraction layers in process mining , 2014, Inf. Syst..

[47]  Avigdor Gal,et al.  Uncertain Schema Matching , 2011, Uncertain Schema Matching.

[48]  Owen Molloy,et al.  Building a Process Performance Model for Business Activity Monitoring , 2007, ISD.

[49]  Y. B. Wah,et al.  Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests , 2011 .

[50]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[51]  Dirk Deridder,et al.  MMC-BPM: A Domain-Specific Language for Business Processes Analysis , 2009, BIS.

[52]  Mathias Weske,et al.  Propagating changes between aligned process models , 2012, J. Syst. Softw..

[53]  Frank Leymann,et al.  Towards Measuring Key Performance Indicators of Semantic Business Processes , 2008, BIS.

[54]  Jan Mendling,et al.  Narrowing the Business-IT Gap in Process Performance Measurement , 2016, CAiSE.

[55]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[56]  Stefania Gnesi,et al.  An automatic tool for the analysis of natural language requirements , 2005, Comput. Syst. Sci. Eng..

[57]  Richard M. Schwartz,et al.  Hidden Understanding Models of Natural Language , 1994, ACL.

[58]  Mehryar Mohri,et al.  Finite-State Transducers in Language and Speech Processing , 1997, CL.

[59]  Gökhan Tür,et al.  What is left to be understood in ATIS? , 2010, 2010 IEEE Spoken Language Technology Workshop.

[60]  Peter C. Brewer,et al.  USING THE BALANCED SCORECARD TO MEASURE SUPPLY CHAIN PERFORMANCE. , 2000 .

[61]  Julian M. Kupiec,et al.  Robust part-of-speech tagging using a hidden Markov model , 1992 .