Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review

Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C–C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)2/AlCl3, FeCl3, MoCl5, PIFA/BF3–Et2O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.

[1]  Jishan Wu,et al.  Scholl Reaction of Perylene-Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon? , 2021, Angewandte Chemie.

[2]  D. Kuck,et al.  Regioconvergent Synthesis of a π-Extended Tribenzotriquinacene-Based Wizard Hat-Shaped Nanographene. , 2021, The Journal of organic chemistry.

[3]  Yuguang Ma,et al.  Electrochemical Synthesis, Deposition, and Doping of Polycyclic Aromatic Hydrocarbon Films. , 2021, Journal of the American Chemical Society.

[4]  Lei Wang,et al.  Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence , 2021, Nature Communications.

[5]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[6]  Wen-Jun Zhang,et al.  Innentitelbild: Mn−O Covalency Governs the Intrinsic Activity of Co‐Mn Spinel Oxides for Boosted Peroxymonosulfate Activation (Angew. Chem. 1/2021) , 2021 .

[7]  K. Müllen,et al.  Negatively Curved Nanographene with Heptagonal and [5]Helicene Units , 2020, Journal of the American Chemical Society.

[8]  M. Martínez‐Díaz,et al.  Annulative π-extension of BODIPYs made easy via gold(i)-catalyzed cycloisomerization , 2020, Chemical science.

[9]  María T. Baumgartner,et al.  Arenium cation or radical cation? An insight into the cyclodehydrogenation reaction of 2-substituted binaphthyls mediated by Lewis acids , 2020, RSC advances.

[10]  L. Borchardt,et al.  Mechanochemical Cyclodehydrogenation with Elemental Copper: An Alternative Pathway toward Nanographenes , 2020 .

[11]  Wesley A. Chalifoux,et al.  Alkyne benzannulations in the preparation of contorted nanographenes. , 2020, Organic & biomolecular chemistry.

[12]  Guangwu Li,et al.  Formation of Azulene‐Embedded Nanographene: Naphthalene to Azulene Rearrangement During the Scholl Reaction , 2020 .

[13]  D. Guldi,et al.  Homo and Hetero Molecular 3D Nanographenes Employing a Cyclooctatetraene Scaffold. , 2019, Journal of the American Chemical Society.

[14]  D. Gryko,et al.  Synthetic Applications of Oxidative Aromatic Coupling—From Biphenols to Nanographenes , 2019, Angewandte Chemie.

[15]  M. Engelund,et al.  Synthesis and reactivity of a trigonal porous nanographene on a gold surface† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc03404h , 2019, Chemical science.

[16]  K. Müllen,et al.  Heteroatom-Doped Nanographenes with Structural Precision , 2019, Accounts of chemical research.

[17]  S. Cohen,et al.  The linkage between reversible Friedel–Crafts acyl rearrangements and the Scholl reaction , 2019, Structural Chemistry.

[18]  Reinhard Berger,et al.  On-Surface Synthesis of a Nonplanar Porous Nanographene , 2019, Journal of the American Chemical Society.

[19]  L. Chi,et al.  Synthesis of Armchair and Chiral Carbon Nanobelts , 2019, Chem.

[20]  P. Franzmann,et al.  Investigations on isomerization and rearrangement of polycyclic arenes under oxidative conditions – Anodic versus reagent-mediated reactions , 2019, Electrochimica Acta.

[21]  N. K. Saha,et al.  π-Extension of Strained Benzenoid Macrocycles Using the Scholl Reaction. , 2018, Organic letters.

[22]  Zhifeng Liu,et al.  Trefoil-Shaped Porous Nanographenes Bearing a Tribenzotriquinacene Core by Three-fold Scholl Macrocyclization. , 2018, Angewandte Chemie.

[23]  Xinliang Feng,et al.  The mechanochemical Scholl reaction - a solvent-free and versatile graphitization tool. , 2018, Chemical communications.

[24]  K. Müllen,et al.  Toward Full Zigzag-Edged Nanographenes: peri-Tetracene and Its Corresponding Circumanthracene. , 2018, Journal of the American Chemical Society.

[25]  Minghong Zhou,et al.  Construction of Microporous Organic Nanotubes Based on Scholl Reaction , 2018 .

[26]  D. Gryko,et al.  Unforeseen 1,2-Aryl Shift in Tetraarylpyrrolo[3,2- b]pyrroles Triggered by Oxidative Aromatic Coupling. , 2018, Organic letters.

[27]  K. Müllen,et al.  On-Surface Growth Dynamics of Graphene Nanoribbons: The Role of Halogen Functionalization. , 2017, ACS nano.

[28]  Adrien Nicolaï,et al.  On-Surface Cyclization of ortho-Dihalotetracenes to Four- and Six-Membered Rings. , 2017, Journal of the American Chemical Society.

[29]  Yongjun Li,et al.  New method for the synthesis of a highly-conjugated acene material and its application in Perovskite solar cells , 2017 .

[30]  D. Kuck,et al.  From Fenestrindane towards Saddle-Shaped Nanographenes Bearing a Tetracoordinate Carbon Atom. , 2017, Angewandte Chemie.

[31]  Z. Mazej,et al.  Reconnaissance of reactivity of an Ag(II)SO4 one-electron oxidizer towards naphthalene derivatives , 2017 .

[32]  K. Itami,et al.  Annulative π-Extension (APEX): Rapid Access to Fused Arenes, Heteroarenes, and Nanographenes. , 2017, Angewandte Chemie.

[33]  P. Venkatakrishnan,et al.  Metal-Free Oxidative C-C Coupling of Arylamines Using a Quinone-Based Organic Oxidant. , 2017, The Journal of organic chemistry.

[34]  Hongwei Yao,et al.  Corrigendum: Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation , 2017, Nature Communications.

[35]  Y. Tobe,et al.  Skeletal Rearrangement of Twisted Polycyclic Aromatic Hydrocarbons under Scholl Reaction Conditions. , 2017, Organic letters.

[36]  A. Wakamiya,et al.  Synthesis, properties, and crystal structures of π-extended double [6]helicenes: contorted multi-dimensional stacking lattice. , 2017, Organic & biomolecular chemistry.

[37]  K. Müllen,et al.  Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties. , 2017, Journal of the American Chemical Society.

[38]  K. Müllen,et al.  Benzo-Fused Double [7]Carbohelicene: Synthesis, Structures, and Physicochemical Properties. , 2017, Angewandte Chemie.

[39]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[40]  Zhifeng Liu,et al.  Twisted Polycyclic Arenes from Tetranaphthyldiphenylbenzenes by Controlling the Scholl Reaction with Substituents. , 2016, Chemistry.

[41]  I. Agranat,et al.  Regioselectivity in the Controversial Scholl Reaction of 1-Benzoylpyrene: Formation of a Five-Member Ring Is Not Unexpected. , 2016, The Journal of organic chemistry.

[42]  Zhuang Mao Png,et al.  Cyclization of Tetraaryl-Substituted Benzoquinones and Hydroquinones through the Scholl Reaction. , 2016, The Journal of organic chemistry.

[43]  D. Kuck,et al.  Three-Fold Scholl-Type Cycloheptatriene Ring Formation around a Tribenzotriquinacene Core: Toward Warped Graphenes. , 2016, Journal of the American Chemical Society.

[44]  E. Pelkey,et al.  Synthesis of Benzo[a]carbazoles and an Indolo[2,3-a]carbazole from 3-Aryltetramic Acids. , 2016, The Journal of organic chemistry.

[45]  K. Müllen,et al.  Fused Dibenzo[a,m]rubicene: A New Bowl-Shaped Subunit of C70 Containing Two Pentagons. , 2016, Journal of the American Chemical Society.

[46]  Christian Depken,et al.  Iodine(III)-mediated oxidative intramolecular arene–alkene coupling exemplified in the synthesis of phenanthrenes , 2016 .

[47]  Thomas Dienel,et al.  On-surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology References and Notes , 2022 .

[48]  F. Rominger,et al.  Synthesis of Triphenylene-Based Triptycenes via Suzuki-Miyaura Cross-Coupling and Subsequent Scholl Reaction. , 2015, The Journal of organic chemistry.

[49]  Juan Gao,et al.  Palladium-Catalyzed Oxidative Arylation of Tertiary Benzamides: Para-Selectivity of Monosubstituted Arenes. , 2015, Organic letters.

[50]  K. Müllen,et al.  The Precise Synthesis of Phenylene-Extended Cyclic Hexa-peri-hexabenzocoronenes from Polyarylated [n]Cycloparaphenylenes by the Scholl Reaction. , 2015, Angewandte Chemie.

[51]  A. Gourdon,et al.  Oxidative cyclodehydrogenation of a perylene derivative: different reagents give different products , 2015 .

[52]  Xiaomin Xu,et al.  Aromatic saddles containing two heptagons. , 2015, Journal of the American Chemical Society.

[53]  J. Sperry,et al.  Biomimetic synthesis of dendridine A. , 2015, Organic letters.

[54]  M. Steigerwald,et al.  Contorted polycyclic aromatics. , 2015, Accounts of chemical research.

[55]  Kuo‐Wei Huang,et al.  Bisindeno-annulated pentacenes with exceptionally high photo-stability and ordered molecular packing: simple synthesis by a regio-selective Scholl reaction. , 2015, Chemical communications.

[56]  D. Kuck,et al.  Tribenzotriquinacenes that Bear Three Peripheral Pentaphenylphenyl Residues: Steric Crowding at a Bowl‐Shaped Core , 2014 .

[57]  S. Laschat,et al.  Pushing steric bias in the Scholl reaction to access liquid crystalline crown ethers. , 2014, The Journal of organic chemistry.

[58]  E. Pelkey,et al.  Preparation of Dibenzo[e,g]isoindol-1-ones via Scholl-Type Oxidative Cyclization Reactions , 2014, The Journal of organic chemistry.

[59]  K. Müllen Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience. , 2014, ACS nano.

[60]  T. Swager,et al.  Efficient Three-Fold Symmetrical Nanographene Synthesis , 2014, Synfacts.

[61]  M. Bonn,et al.  Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. , 2014, Nature chemistry.

[62]  Jishan Wu,et al.  Benzenoid polycyclic hydrocarbons with an open-shell biradical ground state. , 2013, Chemistry, an Asian journal.

[63]  K. Skonieczny,et al.  Comparison of oxidative aromatic coupling and the Scholl reaction. , 2013, Angewandte Chemie.

[64]  L. T. Scott,et al.  A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. , 2013, Nature chemistry.

[65]  R. Sebastián,et al.  Direct arylation of oligonaphthalenes using PIFA/BF3·Et2O: from double arylation to larger oligoarene products. , 2013, The Journal of organic chemistry.

[66]  L. Rahman,et al.  New pyrimidine-based photo-switchable bent-core liquid crystals , 2013 .

[67]  K. Müllen,et al.  Pyrrole-fused azacoronene family: the influence of replacement with dialkoxybenzenes on the optical and electronic properties in neutral and oxidized states. , 2013, Journal of the American Chemical Society.

[68]  Kim K Baldridge,et al.  Of graphs and graphenes: molecular design and chemical studies of aromatic compounds. , 2013, Angewandte Chemie.

[69]  H. Bock,et al.  Twisted polycyclic arenes by intramolecular Scholl reactions of C3-symmetric precursors. , 2013, The Journal of organic chemistry.

[70]  Wallace W. H. Wong,et al.  Liquid crystalline hexa-peri-hexabenzocoronene-diketopyrrolopyrrole organic dyes for photovoltaic applications , 2012 .

[71]  D. Kuck,et al.  Merging tribenzotriquinacene with hexa-peri-hexabenzocoronene: a cycloheptatriene unit generated by Scholl reaction. , 2012, Chemical communications.

[72]  Congli He,et al.  Ultra-sensitive strain sensors based on piezoresistive nanographene films , 2012 .

[73]  K. Müllen,et al.  From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. , 2012, Angewandte Chemie.

[74]  Wallace W. H. Wong,et al.  Synthesis of electron-poor hexa-peri-hexabenzocoronenes. , 2012, Chemical communications.

[75]  Yefeng Tang,et al.  Total synthesis of (±)-decinine via an oxidative biaryl coupling with defined axial chirality. , 2012, Organic letters.

[76]  Y. Tao,et al.  Contorted Tetrabenzocoronene Derivatives for Single Crystal Field Effect Transistors: Correlation between Packing and Mobility , 2012 .

[77]  Lian-ming Yang,et al.  Iron(III)-promoted oxidative coupling of naphthylamines: synthetic and mechanistic investigations. , 2011, Organic letters.

[78]  F. Cataldo,et al.  On the Way to Graphene: The Bottom-Up Approach to Very Large PAHs Using the Scholl Reaction , 2011 .

[79]  Shuichi Suzuki,et al.  Synthetic Organic Spin Chemistry for Structurally Well-defined Open-shell Graphene Fragments Open-shell Graphene Fragments , 2022 .

[80]  Jinhuo Lin,et al.  Hexaalkoxytriphenylenes Synthesized from Facile Solvent-Free Oxidative Coupling Trimerization , 2011 .

[81]  Xin Yan,et al.  Solution-chemistry approach to graphene nanostructures , 2011 .

[82]  S. Waldvogel,et al.  Novel domino oxidative coupling: C-C bond formation sequence to highly functionalized dibenzo[a,c]cycloheptenes. , 2011, Organic letters.

[83]  R. Sebastián,et al.  Direct assembly of polyarenes via C-C coupling Using PIFA/BF3·Et2O. , 2010, Journal of the American Chemical Society.

[84]  Chongjun Wu Soluble and Stable Near-Infrared Dyes Based on Polycyclic Aromatics , 2010 .

[85]  K. Morimoto,et al.  Metal-free regioselective oxidative biaryl coupling leading to head-to-tail bithiophenes: reactivity switching, a concept based on the iodonium(III) intermediate. , 2010, Organic letters.

[86]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[87]  R. Rathore,et al.  Probing the arenium-ion (protontransfer) versus the cation-radical (electron transfer) mechanism of Scholl reaction using DDQ as oxidant. , 2010, The Journal of organic chemistry.

[88]  K. Müllen,et al.  Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies , 2010 .

[89]  A. Yu,et al.  A Simple and Efficient Oxidative Coupling of Aromatic Nuclei Mediated by Manganese Dioxide , 2010 .

[90]  S. Waldvogel,et al.  Oxidative coupling of diaryldisulfides by MoCl5 to thianthrenes. , 2009, Chemistry.

[91]  K. Müllen,et al.  Large polycyclic aromatic hydrocarbons: Synthesis and discotic organization , 2009 .

[92]  Peter Rodgers,et al.  Nanoscience and technology : a collection of reviews from nature journals , 2009 .

[93]  R. Rathore,et al.  Oxidative C-C bond formation (Scholl reaction) with DDQ as an efficient and easily recyclable oxidant. , 2009, Organic letters.

[94]  K. Morimoto,et al.  Clean and Direct Synthesis of α,α′-Bithiophenes and Bipyrroles by Metal-Free Oxidative Coupling Using Recyclable Hypervalent Iodine(III) Reagents , 2009 .

[95]  H. Wegner,et al.  Oxidative Coupling Reactions with Gold , 2009 .

[96]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[97]  T. Dohi,et al.  A new H2O2/acid anhydride system for the iodoarene-catalyzed C-C bond-forming reactions of phenols. , 2008, Organic letters.

[98]  Klaus Müllen,et al.  Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. , 2008, Accounts of chemical research.

[99]  K. Novoselov,et al.  Graphene-based liquid crystal device. , 2008, Nano letters.

[100]  Klaus Müllen,et al.  A bottom-up approach from molecular nanographenes to unconventional carbon materials , 2008 .

[101]  K. Müllen,et al.  Unexpected phenyl group rearrangement during an intramolecular Scholl reaction leading to an alkoxy-substituted hexa-peri-hexabenzocoronene. , 2007, Organic letters.

[102]  B. T. King,et al.  Controlling the Scholl reaction. , 2007, The Journal of organic chemistry.

[103]  Wojciech Pisula,et al.  Graphenes as potential material for electronics. , 2007, Chemical reviews.

[104]  N. Boden,et al.  The synthesis of triphenylene‐based discotic mesogens New and improved routes , 2006 .

[105]  B. T. King,et al.  Investigation of the mechanism of the intramolecular Scholl reaction of contiguous phenylbenzenes. , 2006, The Journal of organic chemistry.

[106]  K. Morimoto,et al.  Direct synthesis of bipyrroles using phenyliodine bis(trifluoroacetate) with bromotrimethylsilane. , 2006, Organic letters.

[107]  Y. Avlasevich,et al.  Facile synthesis of terrylene and its isomer benzoindenoperylene , 2006 .

[108]  B. T. King,et al.  A slippery slope: mechanistic analysis of the intramolecular Scholl reaction of hexaphenylbenzene. , 2004, Journal of the American Chemical Society.

[109]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[110]  Siegfried R. Waldvogel,et al.  Hochmodularer Aufbau unterschiedlich substituierter Dihydrodibenzo[a,c]cycloheptene: ein schneller und effizienter Zugang zu Derivaten des 2,2′‐Cyclo‐7,8′‐neolignans , 2004 .

[111]  Y. Kita,et al.  A novel and direct synthesis of alkylated 2,2'-bithiophene derivatives using a combination of hypervalent iodine(III) reagent and BF3.Et2O. , 2003, Organic & biomolecular chemistry.

[112]  Christopher D. Simpson,et al.  Synthesis of a giant 222 carbon graphite sheet. , 2002, Chemistry.

[113]  Sandeep Kumar,et al.  Synthesis of Triphenylene and Dibenzopyrene Derivatives: Vanadium Oxytrichloride a Novel Reagent , 2001 .

[114]  Sandeep Kumar,et al.  Vanadium oxytrichloride, a novel reagent for the oxidative trimerization of o-dialkoxybenzenes to hexaalkoxytriphenylenes , 1999 .

[115]  G. Cooke,et al.  Synthesis Of Hexa-Alkyloxytriphenylenes Using Fecl3 Supported On Alumina , 1999 .

[116]  Y. Kita,et al.  Oxidative Biaryl Coupling Reaction of Phenol Ether Derivatives Using a Hypervalent Iodine(III) Reagent , 1998 .

[117]  S. Lindeman,et al.  Preparation and Structures of Crystalline Aromatic Cation-Radical Salts. Triethyloxonium Hexachloroantimonate as a Novel (One-Electron) Oxidant. , 1998, The Journal of organic chemistry.

[118]  A. Bard,et al.  Dibenzotetraphenylperiflanthene: Synthesis, photophysical properties, and electrogenerated chemiluminescence , 1996 .

[119]  R. Rathore,et al.  Radical-Cation Catalysis in the Synthesis of Diphenylmethanes via the Dealkylative Coupling of Benzylic Ethers , 1995 .

[120]  Manfred Wagner,et al.  EINE CYCLOADDITIONS-CYCLODEHYDRIERUNGS-ROUTE VON STILBENOIDEN ZU AUSGEDEHNTEN AROMATISCHEN KOHLENWASSERSTOFFEN , 1995 .

[121]  M. Hanack,et al.  A High Yield Easy Method for the Preparation of Alkoxy-Substituted Triphenylenes , 1994 .

[122]  T. A. Claxton,et al.  Selective Cross-Coupling of 2-Naphthol and 2-Naphthylamine Derivatives. A Facile Synthesis of 2,2',3-Trisubstituted and 2,2',3,3'-Tetrasubstituted 1,1'-Binaphthyls , 1994 .

[123]  G. Wegner,et al.  SYNTHESIS OF ALKYL-SUBSTITUTED AND ALKOXY-SUBSTITUTED BENZILS AND OXIDATIVE COUPLING TO TETRAALKOXYPHENANTHRENE-9,10-DIONES , 1994 .

[124]  N. Boden,et al.  The synthesis of triphenylene-based discotic mesogens New and improved routes , 1993 .

[125]  P. Sedmera,et al.  Synthesis of enantiomerically pure 2,2'-dihydroxy-1,1'-binaphthyl, 2,2'-diamino-1,1'-binaphthyl, and 2-amino-2'-hydroxy-1,1'-binaphthyl. Comparison of processes operating as diastereoselective crystallization and as second order asymmetric transformation , 1992 .

[126]  D. W. Young,et al.  Thallium in organic synthesis. 58. Regiospecific intermolecular oxidative dehydrodimerization of aromatic compounds to biaryls using thallium(III) trifluoroacetate , 1980 .

[127]  V. Parker,et al.  Electrosynthesis of medium and large sized rings by oxidative cyclization of bis(3,4-dimethoxyphenyl)alkanes , 1974 .

[128]  O. Hammerich,et al.  Anodic oxidation of methoxybibenzyls. Products and mechanism of the intramolecular cyclization , 1973 .

[129]  J. Campbell,et al.  New approach to the synthesis of dibenzo[a,l] pyrenes , 1971 .

[130]  A. Wick Schmelzreaktionen mit Aluminiumchlorid. 6. Mitteilung [1]. Zur kenntnis der carbazolierung von anthrimiden in aluminiumchlorid‐schmelzen , 1971 .

[131]  Heinrich Vollmann Über 4.5‐Benzo‐9.10‐naphtho‐pyren‐chinone‐(3.8) und das 5.6‐Benzo‐zethren‐chinon‐(4.14). Beiträge zur Kenntnis der Scholl‐ bzw. Scholl‐Kränzlein‐Reaktion , 1963 .

[132]  R. Scholl,et al.  meso-Benzdianthron (Helianthron), meso-Naphthodianthron, und ein neuer Weg zum Flavanthren , 1910 .

[133]  R. Scholl,et al.  Perylen, ein hoch kondensierter aromatischer Kohlenwasserstoff C20H12 , 1910 .

[134]  Peiping Zhang,et al.  Synthesis of N-containing porous aromatic frameworks via Scholl reaction for reversible iodine capture , 2021 .

[135]  Yuta Yamamoto,et al.  Metal‐Support Interaction Concerning Particle Size Effect of Pd/Al₂O₃ on Methane Combustion , 2017 .

[136]  K. Müllen,et al.  From Polyphenylenes to Nanographenes and Graphene Nanoribbons , 2017 .

[137]  Sandeep Kumar,et al.  Oxidative trimerization of o-dialkoxybenzenes to hexaalkoxytriphenylenes: molybdenum(v) chloride as a novel reagent , 1997 .

[138]  Jana Günterová,et al.  Highly selective oxidative cross-coupling of substituted 2-naphthols: A convenient approach to unsymmetrical 1,1′-binaphthalene-2,2′-diols , 1990 .

[139]  P. Kovacic,et al.  Polymerization of benzene to -polyphenyl , 1962 .

[140]  G. Baddeley 205. Hydrogen chloride–aluminium chloride as an agent of isomerisation , 1950 .

[141]  J. Kenner,et al.  64. The meta-alkylation of aromatic hydrocarbons by the Friedel-Crafts reaction , 1935 .

[142]  R. Scholl,et al.  Abspaltung aromatisch gebundenen Wasserstoffs und Verknüpfung aromatischer Kerne durch Aluminiumchlorid , 1912 .

[143]  Zeming Xia,et al.  Synthesis of Zigzag Carbon Nanobelts through Scholl Reactions , 2022, Angewandte Chemie.