Distributionally Robust Inventory Control When Demand Is a Martingale

Demand forecasting plays an important role in many inventory control problems. To mitigate the potential harms of model misspecification in this context, various forms of distributionally robust optimization have been applied. Although many of these methodologies suffer from the problem of time inconsistency, the work of Klabjan et al. established a general time-consistent framework for such problems by connecting to the literature on robust Markov decision processes. Motivated by the fact that many forecasting models exhibit very special structure as well as a desire to understand the impact of positing different dependency structures in distributionally robust multistage optimization, we formulate and solve a time-consistent distributionally robust multistage newsvendor model, which naturally robustifies some of the simplest inventory models with demand forecasting. In particular, in some of the simplest such models, demand evolves as a martingale (i.e., expected demand tomorrow equals realized demand today). We consider a robust variant of such models in which the sequence of future demands may be any martingale with given mean and support. Under such a model, past realizations of demand are naturally incorporated into the structure of the uncertainty set going forward. We explicitly compute the minimax optimal policy (and worst-case distribution) in closed form by combining ideas from convex analysis, probability, and dynamic programming. We prove that, at optimality, the worst-case demand distribution corresponds to the setting in which inventory may become obsolete at a random time. To gain further insight, we prove weak convergence (as the time horizon grows large) to a simple and intuitive process. We also compare with the analogous setting in which demand is independent across periods (analyzed previously by Shapiro) and identify several differences between these models in the spirit of the price of correlations studied by Agrawal et al. Finally, we complement our results by providing both numerical experiments that illustrate the potential benefits and limitations of our approach as well as additional theoretical analyses exploring what happens when our modeling assumptions do not hold.

[1]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[2]  H. Scarf THE OPTIMALITY OF (S,S) POLICIES IN THE DYNAMIC INVENTORY PROBLEM , 1959 .

[3]  S. Karlin,et al.  Studies in the Mathematical Theory of Inventory and Production, by K.J. Arrow, S. Karlin, H. Scarf with contributions by M.J. Beckmann, J. Gessford, R.F. Muth. Stanford, California, Stanford University Press, 1958, X p.340p., $ 8.75. , 1959, Bulletin de l'Institut de recherches économiques et sociales.

[4]  H. Scarf Bayes Solutions of the Statistical Inventory Problem , 1959 .

[5]  H. Scarf Some remarks on bayes solutions to the inventory problem , 1960 .

[6]  J. Tukey A survey of sampling from contaminated distributions , 1960 .

[7]  S. Karlin,et al.  OPTIMAL POLICY FOR DYNAMIC INVENTORY PROCESS WITH NON-STATIONARY STOCHASTIC DEMANDS , 1960 .

[8]  Hiroshi Kasugai NOTE ON MINIMAX REGRET ORDERING POLICY -STATIC AND DYNAMIC SOLUTIONS AND A COMPARISON TO MAXIM IN POLICY-- , 1961 .

[9]  D. Iglehart Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem , 1963 .

[10]  John Y. Lu,et al.  Dynamic Modeling of Inventories Subject to Obsolescence , 1964 .

[11]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[12]  A. F. Veinott Optimal Policy for a Multi-product, Dynamic Non-Stationary Inventory Problem , 1965 .

[13]  J. Žáčková On minimax solutions of stochastic linear programming problems , 1966 .

[14]  Jr. Arthur F. Veinott On the Opimality of $( {s,S} )$ Inventory Policies: New Conditions and a New Proof , 1966 .

[15]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[16]  Warren H. Hausman,et al.  Sequential Decision Problems: A Model to Exploit Existing Forecasters , 1969 .

[17]  William P. Pierskalla An inventory problem with obsolescence , 1969 .

[18]  Basil A. Kalymon Stochastic Prices in a Single-Item Inventory Purchasing Model , 1971, Oper. Res..

[19]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[20]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[21]  Howard E. Thompson,et al.  Optimality of Myopic Inventory Policies for Certain Dependent Demand Processes , 1975 .

[22]  Richard M. Feldman,et al.  A continuous review (s, S) inventory system in a random environment , 1978 .

[23]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[24]  A. Blinder Inventories and Sticky Prices: More on the Microfoundations of Macroeconomics , 1981 .

[25]  Robert S. Pindyck,et al.  Adjustment Costs, Uncertainty, and the Behavior of the Firm , 1982 .

[26]  T. Hill,et al.  Stop rule inequalities for uniformly bounded sequences of random variables , 1983 .

[27]  Stephen C. Graves,et al.  TWO-STAGE PRODUCTION PLANNING IN A DYNAMIC ENVIRONMENT , 1985 .

[28]  J. Franke Minimax-robust prediction of discrete time series , 1985 .

[29]  Bruce L. Miller,et al.  Scarf's State Reduction Method, Flexibility, and a Dependent Demand Inventory Model , 1986, Oper. Res..

[30]  J. Dupacová The minimax approach to stochastic programming and an illustrative application , 1987 .

[31]  Rudolf Dutter,et al.  Robust time series analysis: a survey , 1987, Kybernetika.

[32]  Rina Dechter,et al.  The optimality of A , 1988 .

[33]  Kenneth O. Cogger,et al.  Proposals for research in time series forecasting , 1988 .

[34]  G. Reyman State reduction in a dependent demand inventory model given by a time series , 1989 .

[35]  R. Wets,et al.  Stochastic programming , 1989 .

[36]  W. Lovejoy Myopic policies for some inventory models with uncertain demand distributions , 1990 .

[37]  Ralph D. Badinelli,et al.  The inventory costs of common mis-specification of demand-forecasting models , 1990 .

[38]  W. H. Hausman,et al.  Optimal centralized ordering policies in multi-echelon inventory systems with correlated demands , 1990 .

[39]  W. Lovejoy Stopped Myopic Policies in Some Inventory Models with Generalized Demand Processes , 1992 .

[40]  Jing-Sheng Song,et al.  Inventory Control in a Fluctuating Demand Environment , 1993, Oper. Res..

[41]  Prafulla Joglekar,et al.  An exact formulation of inventory costs and optimal lot size in face of sudden obsolescence , 1993, Oper. Res. Lett..

[42]  G. Gallego,et al.  The Distribution Free Newsboy Problem: Review and Extensions , 1993 .

[43]  G. Gallego,et al.  Distribution Free Procedures for Some Inventory Models , 1994 .

[44]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[45]  D. Heath,et al.  Modelling the evolution of demand forecasts with application to safety stock analysis in production distribution systems , 1994 .

[46]  R. Fildes,et al.  The Impact of Empirical Accuracy Studies On Time Series Analysis and Forecasting , 1995 .

[47]  Jing-Sheng Song,et al.  Managing Inventory with the Prospect of Obsolescence , 1996, Oper. Res..

[48]  Hau L. Lee,et al.  Information distortion in a supply chain: the bullwhip effect , 1997 .

[49]  G. Gallego New Bounds and Heuristics for ( Q , r ) Policies , 1998 .

[50]  Hans Föllmer,et al.  Quantile hedging , 1999, Finance Stochastics.

[51]  Stephen C. Graves,et al.  A Single-Item Inventory Model for a Nonstationary Demand Process , 1999, Manuf. Serv. Oper. Manag..

[52]  E. Altman,et al.  Weighted Discounted Stochastic Games with Perfect Information , 2000 .

[53]  Paul H. Zipkin,et al.  Foundations of Inventory Management , 2000 .

[54]  Frank Y. Chen,et al.  Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information.: The Impact of Forecasting, Lead Times, and Information. , 2000 .

[55]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[57]  UniversityJennifer K. RyanSchool Minimax Analysis for Finite Horizon Inventory Models , 2001 .

[58]  Lawrence M. Wein,et al.  Analysis of a Forecasting-Production-Inventory System with Stationary Demand , 2001, Manag. Sci..

[59]  Özalp Özer,et al.  Integrating Replenishment Decisions with Advance Demand Information , 2001, Manag. Sci..

[60]  D. Simchi-Levi,et al.  Minimax analysis for finite-horizon inventory models , 2001 .

[61]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[62]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[63]  Layth C. Alwan,et al.  Stochastic characterization of upstream demand processes in a supply chain , 2003 .

[64]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[65]  Ignacio N. Lobato,et al.  Consistent Estimation of Models Defined by Conditional Moment Restrictions , 2004 .

[66]  Herbert E. Scarf,et al.  Optimal Policies for a Multi-Echelon Inventory Problem , 1960, Manag. Sci..

[67]  Vineet Padmanabhan,et al.  Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect" , 1997, Manag. Sci..

[68]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[69]  João Yoshiyuki Ishihara,et al.  Robust Kalman filter for descriptor systems , 2006, IEEE Transactions on Automatic Control.

[70]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[71]  Boaz Golany,et al.  Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach , 2005, Manuf. Serv. Oper. Manag..

[72]  Laurent El Ghaoui,et al.  Robust Control of Markov Decision Processes with Uncertain Transition Matrices , 2005, Oper. Res..

[73]  Garud Iyengar,et al.  Robust Dynamic Programming , 2005, Math. Oper. Res..

[74]  Çerağ Pinçe,et al.  Advances in Inventory Management: Dynamic Models , 2005 .

[75]  Panagiotis Kouvelis,et al.  Order Quantity and Timing Flexibility in Supply Chains: The Role of Demand Characteristics , 2005, Manag. Sci..

[76]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Inventory Theory , 2006, Oper. Res..

[77]  Tetsuo Iida,et al.  Approximate Solutions of a Dynamic Forecast-Inventory Model , 2006, Manuf. Serv. Oper. Manag..

[78]  Rob J Hyndman,et al.  25 years of time series forecasting , 2006 .

[79]  Min-Chiang Wang,et al.  Expected Value of Distribution Information for the Newsvendor Problem , 2006, Oper. Res..

[80]  Jing-Sheng Song,et al.  Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds , 2006, Oper. Res..

[81]  Kiyohiko G. Nishimura,et al.  Irreversible investment and Knightian uncertainty , 2002, J. Econ. Theory.

[82]  Alexander Shapiro,et al.  Coherent risk measures in inventory problems , 2007, Eur. J. Oper. Res..

[83]  Ioana Popescu,et al.  Robust Mean-Covariance Solutions for Stochastic Optimization , 2007, Oper. Res..

[84]  Georgia Perakis,et al.  Regret in the Newsvendor Model with Partial Information , 2008, Oper. Res..

[85]  Retsef Levi,et al.  A 2-Approximation Algorithm for Stochastic Inventory Control Models with Lost Sales , 2008, Math. Oper. Res..

[86]  Andrzej Ruszczynski,et al.  A risk-averse newsvendor with law invariant coherent measures of risk , 2008, Oper. Res. Lett..

[87]  Sven F. Crone,et al.  Forecasting and operational research: a review , 2008, J. Oper. Res. Soc..

[88]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[89]  Jitka Dupacová,et al.  Stochastic Programming: Minimax Approach , 2009, Encyclopedia of Optimization.

[90]  Ignacio N. Lobato,et al.  Testing the Martingale Hypothesis , 2009 .

[91]  Kellen Petersen August Real Analysis , 2009 .

[92]  Ben-Tal Aharon,et al.  Robust multi-echelon multi-period inventory control , 2009 .

[93]  F. Riedel Optimal Stopping With Multiple Priors , 2009 .

[94]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[95]  Alexander Shapiro,et al.  On a time consistency concept in risk averse multistage stochastic programming , 2009, Oper. Res. Lett..

[96]  The Worst Case for Real Options , 2010 .

[97]  Xuan Vinh Doan,et al.  Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion , 2010, Math. Oper. Res..

[98]  P. Ruckdeschel Optimally (Distributional-)Robust Kalman Filtering , 2010, 1004.3393.

[99]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[100]  Pablo A. Parrilo,et al.  Optimality of Affine Policies in Multistage Robust Optimization , 2009, Math. Oper. Res..

[101]  Melvyn Sim,et al.  Robust Approximation to Multiperiod Inventory Management , 2010, Oper. Res..

[102]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[103]  Garud Iyengar,et al.  A new robust cycle-based inventory control policy , 2011 .

[104]  Tong Wang,et al.  A Multiordering Newsvendor Model with Dynamic Forecast Evolution , 2012, Manuf. Serv. Oper. Manag..

[105]  Alexander Shapiro,et al.  Minimax and risk averse multistage stochastic programming , 2012, Eur. J. Oper. Res..

[106]  Dimitris Bertsimas,et al.  Tractable stochastic analysis in high dimensions via robust optimization , 2012, Mathematical Programming.

[107]  Amin Saberi,et al.  INFORMS doi 10.1287/xxxx.0000.0000 c○0000 INFORMS Price of Correlations in Stochastic Optimization , 2022 .

[108]  H. Soner,et al.  Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.

[109]  Melvyn Sim,et al.  A practicable framework for distributionally robust linear optimization , 2013 .

[110]  F. Riedel,et al.  Optimal stopping under ambiguity in continuous time , 2013 .

[111]  Alexander Shapiro,et al.  Distributionally robust multistage inventory models with moment constraints , 2013 .

[112]  A Note on the Fundamental Theorem of Asset Pricing Under Model Uncertainty , 2013, 1309.2728.

[113]  Andre Wibisono,et al.  How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal , 2013, NIPS.

[114]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[115]  Daniel Kuhn,et al.  Robust Markov Decision Processes , 2013, Math. Oper. Res..

[116]  Mayank Sharma,et al.  Supermodularity and Affine Policies in Dynamic Robust Optimization , 2013, Oper. Res..

[117]  Jiawei Zhang,et al.  Newsvendor optimization with limited distribution information , 2013, Optim. Methods Softw..

[118]  Diego Klabjan,et al.  Robust Stochastic Lot-Sizing by Means of Histograms , 2013 .

[119]  Erhan Bayraktar,et al.  On the Robust Optimal Stopping Problem , 2013, SIAM J. Control. Optim..

[120]  Marcel Nutz,et al.  Martingale inequalities and deterministic counterparts , 2014, 1401.4698.

[121]  D. Bertsimas,et al.  Robust Transient Multi-Server Queues and Feedforward Networks , 2014 .

[122]  D. Bertsimas,et al.  Data-driven learning in dynamic pricing using adaptive optimization , 2014 .

[123]  Maria-Pia Victoria-Feser,et al.  Estimation of Time Series Models via Robust Wavelet Variance , 2014 .

[124]  Paul Glasserman,et al.  Robust risk measurement and model risk , 2014 .

[125]  Tomasz R. Bielecki,et al.  On time consistency of dynamic risk and performance measures in discrete time , 2014 .

[126]  Vishal Gupta,et al.  Robust SAA , 2014 .

[127]  Dimitris Bertsimas,et al.  Robust Queueing Theory , 2015, Oper. Res..

[128]  Marek Petrik,et al.  Tight Approximations of Dynamic Risk Measures , 2011, Math. Oper. Res..

[129]  M. Moklyachuk,et al.  Minimax-robust filtering problem for stochastic sequences with stationary increments , 2015 .

[130]  Warren H. Hausman,et al.  Multiproduct Production Scheduling for Style Goods With Limited Capacity, Forecast Revisions and Terminal Delivery , 2015 .

[131]  Nizar Touzi,et al.  Complete Duality for Martingale Optimal Transport on the Line , 2015 .

[132]  E. Ronchetti,et al.  Robust statistics: a selective overview and new directions , 2015 .

[133]  Xiuli Chao,et al.  Approximation Algorithms for Perishable Inventory Systems , 2015, Oper. Res..

[134]  Vishal Gupta Near-Optimal Ambiguity Sets for Distributionally Robust Optimization , 2015 .

[135]  D. den Hertog,et al.  When are Static and Adjustable Robust Optimization with Constraint-Wise Uncertainty Equivalent? , 2015 .

[136]  Daniel Kuhn,et al.  Distributionally robust multi-item newsvendor problems with multimodal demand distributions , 2014, Mathematical Programming.

[137]  Gilbert Laporte,et al.  The Impact of Modeling on Robust Inventory Management Under Demand Uncertainty , 2016, Manag. Sci..

[138]  M. Moklyachuk,et al.  Minimax-robust filtering problem for stochastic sequences with stationary increments and cointegrated sequences , 2014 .

[139]  E. Ostermann Convergence of probability measures , 2022 .

[140]  Seçil Sözüer,et al.  The State of Robust Optimization , 2016 .

[141]  Alexander Shapiro,et al.  Rectangular Sets of Probability Measures , 2016, Oper. Res..

[142]  Emilio Carrizosa,et al.  Robust newsvendor problem with autoregressive demand , 2016, Comput. Oper. Res..

[143]  Michael R. Wagner,et al.  Closed-Form Solutions for Robust Inventory Management , 2017, Manag. Sci..

[144]  Dimitris Bertsimas,et al.  Robust transient analysis of multi-server queueing systems and feed-forward networks , 2018, Queueing Systems.

[145]  Georgia Perakis,et al.  Leveraging Comparables for New Product Sales Forecasting , 2017, Production and Operations Management.

[146]  Michael R. Wagner Robust Inventory Management: An Optimal Control Approach , 2018, Oper. Res..

[147]  Dick den Hertog,et al.  When are static and adjustable robust optimization problems with constraint-wise uncertainty equivalent? , 2017, Math. Program..

[148]  Tomasz R. Bielecki,et al.  A Unified Approach to Time Consistency of Dynamic Risk Measures and Dynamic Performance Measures in Discrete Time , 2018, Math. Oper. Res..

[149]  Vishal Gupta,et al.  Robust sample average approximation , 2014, Math. Program..

[150]  Henry Lam,et al.  Sensitivity to Serial Dependency of Input Processes: A Robust Approach , 2016, Manag. Sci..

[151]  Kagan Gokbayrak,et al.  Structural Results for Average‐Cost Inventory Models with Markov‐Modulated Demand and Partial Information , 2019, Production and Operations Management.

[152]  Kejia Hu,et al.  Forecasting New Product Life Cycle Curves: Practical Approach and Empirical Analysis , 2019, Manuf. Serv. Oper. Manag..

[153]  Vishal Gupta,et al.  Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization , 2019, Manag. Sci..

[154]  Jérémie Gallien,et al.  Dynamic Procurement of New Products with Covariate Information: The Residual Tree Method , 2019, Manuf. Serv. Oper. Manag..

[155]  Jan A. Van Mieghem,et al.  Dual Sourcing and Smoothing Under Non-Stationary Demand Time Series: Re-Shoring with Speedfactories , 2019 .

[156]  Jiankun Sun,et al.  Robust Dual Sourcing Inventory Management: Optimality of Capped Dual Index Policies and Smoothing , 2019, Manuf. Serv. Oper. Manag..

[157]  Mihai Anitescu,et al.  Distributionally Robust Optimization with Correlated Data from Vector Autoregressive Processes , 2019, Oper. Res. Lett..

[158]  Dick den Hertog,et al.  A survey of adjustable robust optimization , 2019, Eur. J. Oper. Res..

[159]  Dimitris Bertsimas,et al.  From Predictive to Prescriptive Analytics , 2014, Manag. Sci..

[160]  Stephen M. Disney,et al.  Dual Sourcing and Smoothing Under Nonstationary Demand Time Series: Reshoring with SpeedFactories , 2021, Manag. Sci..

[161]  Linwei Xin,et al.  Time (in)consistency of multistage distributionally robust inventory models with moment constraints , 2013, Eur. J. Oper. Res..