Properties of Visibly Pushdown Transducers

Visibly pushdown transducers form a subclass of pushdown transducers that (strictly) extends finite state transducers with a stack. Like visibly pushdown automata, the input symbols determine the stack operations. In this paper, we prove that functionality is decidable in PSpace for visibly pushdown transducers. The proof is done via a pumping argument: if a word with two outputs has a sufficiently large nesting depth, there exists a nested word with two outputs whose nesting depth is strictly smaller. The proof uses technics of word combinatorics. As a consequence of decidability of functionality, we also show that equivalence of functional visibly pushdown transducers is Exptime-Complete.

[1]  Meera Blattner Single-Valued a-Transducers , 1977, J. Comput. Syst. Sci..

[2]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[3]  Joachim Niehren,et al.  Equivalence of Deterministic Nested Word to Word Transducers , 2009, FCT.

[4]  Thomas Schwentick,et al.  On the Complexity of Equational Horn Clauses , 2005, CADE.

[5]  Joost Engelfriet,et al.  Macro Tree Transducers , 1985, J. Comput. Syst. Sci..

[6]  Rajeev Alur Marrying Words and Trees , 2007, CSR.

[7]  W. Marsden I and J , 2012 .

[8]  Frank Neven,et al.  Structured Document Transformations Based on XSL , 1999, DBPL.

[9]  Stefanie Scherzinger,et al.  Attribute grammars for scalable query processing on XML streams , 2005, The VLDB Journal.

[10]  Sebastian Maneth,et al.  The Complexity of Translation Membership for Macro Tree Transducers , 2009, ArXiv.

[11]  Wenfei Fan,et al.  Query Optimization for Semistructured Data Using Path Constraints in a Deterministic Data Model , 1999, DBPL.

[12]  Helmut Seidl,et al.  Single-Valuedness of Tree Transducers is Decidable in Polynomial Time , 1992, Theor. Comput. Sci..

[13]  Jean-François Raskin,et al.  Visibly Pushdown Transducers ⋆ , 2008 .

[14]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[15]  Marcel Paul Schützenberger,et al.  Sur les relations rationnelles , 1975, Automata Theory and Formal Languages.

[16]  A Pettorossi Automata theory and formal languages , 2008 .

[17]  Joost Engelfriet,et al.  Macro Tree Translations of Linear Size Increase are MSO Definable , 2003, SIAM J. Comput..

[18]  Tero Harju,et al.  Some Decision Problems Concerning Semilinearity and Commutation , 2002, J. Comput. Syst. Sci..

[19]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[20]  Juha Kortelainen,et al.  On the System of Word Equations x0ui1x1ui2x2ui3x3=y0vi1y1vi2y2vi3y3(i=0, 1, 2, ...) in a Free Monoid , 1999, Theor. Comput. Sci..

[21]  Helmut Seidl,et al.  Macro forest transducers , 2004, Inf. Process. Lett..

[22]  Wojciech Plandowski,et al.  Testing Equivalence of Morphisms on Context-Free Languages , 1994, ESA.

[23]  Graham Steel,et al.  Deduction with XOR Constraints in Security API Modelling , 2005, CADE.

[24]  Joost Engelfriet,et al.  The equivalence problem for deterministic MSO tree transducers is decidable , 2005, Inf. Process. Lett..

[25]  H IbarraOscar Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978 .

[26]  Jean-Marc Talbot,et al.  On Functionality of Visibly Pushdown Transducers , 2010, ArXiv.

[27]  Jacques Sakarovitch,et al.  Squaring transducers: an efficient procedure for deciding functionality and sequentiality , 2000, Theor. Comput. Sci..

[28]  Eitan M. Gurari,et al.  A note on finite-valued and finitely ambiguous transducers , 1983, Mathematical systems theory.

[29]  Joost Engelfriet,et al.  Deciding equivalence of top-down XML transformations in polynomial time , 2009, J. Comput. Syst. Sci..

[30]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[31]  Géraud Sénizergues,et al.  T(a) = T(b)? , 1999, ICALP.

[32]  Helmut Seidl,et al.  Equivalence of finite-valued tree transducers is decidable , 1994, Mathematical systems theory.