Use of the MULTINEST algorithm for gravitational wave data analysis
暂无分享,去创建一个
[1] C. Helstrom,et al. Statistical theory of signal detection , 1968 .
[2] Owen. Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1996, Physical review. D, Particles and fields.
[3] Luc Blanchet,et al. Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order , 1996, gr-qc/9602024.
[4] K. Riedel. Numerical Bayesian Methods Applied to Signal Processing , 1996 .
[5] Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.
[6] Bernard F. Schutz,et al. Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998 .
[7] Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna , 2001, gr-qc/0106058.
[8] M. P. Hobson,et al. Combining cosmological data sets: hyperparameters and Bayesian evidence , 2002 .
[9] M. Halpern,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .
[10] S. F. Portegies Zwart,et al. Short-period AM CVn systems as optical, X-ray and gravitational-wave sources , 2004 .
[11] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[12] Yuhong Yang,et al. Information Theory, Inference, and Learning Algorithms , 2005 .
[13] Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006 .
[14] The search for massive black hole binaries with LISA , 2006, gr-qc/0612091.
[15] Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.
[16] A three-stage search for supermassive black-hole binaries in LISA data , 2007, 0704.2447.
[17] Report on the second Mock LISA Data Challenge , 2007, 0711.2667.
[18] B. S. Sathyaprakash,et al. Report on the first round of the Mock LISA Data Challenges , 2007 .
[19] Catching supermassive black hole binaries without a net , 2006, gr-qc/0605135.
[20] A. Liddle,et al. Information criteria for astrophysical model selection , 2007, astro-ph/0701113.
[21] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[22] J. Gair,et al. The Mock LISA Data Challenges: from Challenge 1B to Challenge 3 , 2008, 0806.2110.
[23] S. Babak. Building a stochastic template bank for detecting massive black hole binaries , 2008, 0801.4070.
[24] F. Feroz,et al. Bayesian selection of sign μ within mSUGRA in global fits including WMAP5 results , 2008, 0807.4512.
[25] J. Gair,et al. A constrained Metropolis–Hastings search for EMRIs in the Mock LISA Data Challenge 1B , 2008, 0804.3322.
[26] S. Fairhurst,et al. A hierarchical search for gravitational waves from supermassive black hole binary mergers , 2008, 0804.3274.
[27] N. Cornish. Detection strategies for extreme mass ratio inspirals , 2008, 0804.3323.
[28] A. Vecchio,et al. Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection , 2008, 0807.4483.
[29] F. Feroz,et al. The impact of priors and observables on parameter inferences in the constrained MSSM , 2008, 0809.3792.
[31] F. Feroz,et al. Cluster detection in weak lensing surveys , 2008, 0810.0781.
[32] F. Feroz,et al. Bayesian modelling of clusters of galaxies from multifrequency‐pointed Sunyaev–Zel'dovich observations , 2008, 0811.1199.
[33] J. Gair,et al. Cosmic swarms: a search for supermassive black holes in the LISA data stream with a hybrid evolutionary algorithm , 2009, 0903.3733.
[34] J. Gair,et al. An algorithm for the detection of extreme mass ratio inspirals in LISA data , 2009, 0902.4133.
[35] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[36] Characterizing the Gravitational Wave Signature from Cosmic String Cusps , 2008, 0812.1590.
[37] Neil J. Cornish,et al. Bayesian approach to the detection problem in gravitational wave astronomy , 2009, 0902.0368.