DWinding Number : Theory and Application toMedical Imaging

We develop a new formulation, mathematically elegant, to detect critical points of 3D scalar images. It is based on a topological number, which is the generalization to three dimensions of the 2D winding number. We illustrate our method by considering three different biomedical applications, namely, detection and counting of ovarian follicles and neuronal cells and estimation of cardiac motion from tagged MR images. Qualitative and quantitative evaluation emphasizes the reliability of the results.

[1]  M. Nakahara Geometry, Topology and Physics , 2018 .

[2]  Süleyman Kaplan,et al.  Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900MHz electromagnetic field , 2010, Brain Research.

[3]  Luc Florack,et al.  Extraction of Cardiac Motion Using Scale-Space Features Points and Gauged Reconstruction , 2009, CAIP.

[4]  Luc Florack,et al.  Optic Flow Using Multi-scale Anchor Points , 2009, CAIP.

[5]  Luc Florack,et al.  A Multi-scale Feature Based Optic Flow Method for 3D Cardiac Motion Estimation , 2009, SSVM.

[6]  Douglas L. Rosene,et al.  Cerebellar Purkinje Cells are Reduced in a Subpopulation of Autistic Brains: A Stereological Experiment Using Calbindin-D28k , 2008, The Cerebellum.

[7]  P. Boesiger,et al.  Accelerated whole‐heart 3D CSPAMM for myocardial motion quantification , 2008, Magnetic resonance in medicine.

[8]  Luc Florack,et al.  Optic Flow from Multi-scale Dynamic Anchor Point Attributes , 2006, ICIAR.

[9]  Jerry L. Prince,et al.  Fast tracking of cardiac motion using 3D-HARP , 2005, IEEE Transactions on Biomedical Engineering.

[10]  Luc Florack,et al.  Using Top-Points as Interest Points for Image Matching , 2005, DSSCV.

[11]  Luc Florack,et al.  Stability of Top-Points in Scale Space , 2005, Scale-Space.

[12]  Yoshihisa Shinagawa,et al.  Image Interpolation Using Enhanced Multiresolution Critical-Point Filters , 2004, International Journal of Computer Vision.

[13]  A. C. F. Colchester,et al.  Detection of Objects by Integrating Watersheds and Critical Point Analysis , 2003, MICCAI.

[14]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[15]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[16]  G. Wenk,et al.  Neuropathologic changes in Alzheimer's disease. , 2003, The Journal of clinical psychiatry.

[17]  Stephen Mann,et al.  Computing singularities of 3D vector fields with geometric algebra , 2002, IEEE Visualization, 2002. VIS 2002..

[18]  Frithjof Kruggel,et al.  Segmentation of vector fields by critical point analysis: application to brain deformation , 2002, Object recognition supported by user interaction for service robots.

[19]  Max A. Viergever,et al.  A Computational Method for Segmenting Topological Point-Sets and Application to Image Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  A. Hsueh,et al.  Initial and cyclic recruitment of ovarian follicles. , 2000, Endocrine reviews.

[21]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  Stiliyan Kalitzin,et al.  Computer Assisted Human Follicle Analysis for Fertility Prospects with 3D Ultrasound , 1999, IPMI.

[23]  Max A. Viergever,et al.  Topological Numbers and Singularities in Scalar Images: Scale-Space Evolution Properties , 1998, Journal of Mathematical Imaging and Vision.

[24]  Tosiyasu L. Kunii,et al.  Unconstrained Automatic Image Matching Using Multiresolutional Critical-Point Filters , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Max A. Viergever,et al.  On topological deep-structure segmentation , 1997, Proceedings of International Conference on Image Processing.

[26]  L. Korbo,et al.  The distributions of Purkinje cell perikaryon and nuclear volume in human and rat cerebellum with the nucleator method , 1995, Neuroscience.

[27]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[28]  Arne Møller,et al.  Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method , 1993, Brain Research.

[29]  M. Faddy,et al.  Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. , 1992, Human reproduction.

[30]  David J. Fleet,et al.  Performance of optical flow techniques , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[32]  J. Nelson,et al.  Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. , 1988, The Journal of clinical endocrinology and metabolism.

[33]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[34]  Karl Schilling,et al.  Developmental increase of total cell numbers in the murine cerebellum , 2008, The Cerebellum.

[35]  TERENCE TAO,et al.  DIFFERENTIAL FORMS AND INTEGRATION , 2008 .

[36]  Rajesh Pahwa,et al.  Reduced Purkinje cell number in essential tremor: a postmortem study. , 2008, Archives of neurology.

[37]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[38]  J. Barron Experience with 3D Optical Flow on Gated MRI Cardiac Datasets , 2004, CRV.

[39]  Ming-Yang Chang,et al.  The Antral Follicle Count Predicts the Outcome of Pregnancy in a Controlled Ovarian Hyperstimulation/Intrauterine Insemination Program , 2004, Journal of Assisted Reproduction and Genetics.

[40]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[41]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[42]  L. Nackman Two-Dimensional Critical Point Configuration Graphs , 1984, IEEE Trans. Pattern Anal. Mach. Intell..