Preconditioning bandgap eigenvalue problems in three-dimensional photonic crystals simulations

To explore band structures of three-dimensional photonic crystals numerically, we need to solve the eigenvalue problems derived from the governing Maxwell equations. The solutions of these eigenvalue problems cannot be computed effectively unless a suitable combination of eigenvalue solver and preconditioner is chosen. Taking eigenvalue problems due to Yee's scheme as examples, we propose using Krylov-Schur method and Jacobi-Davidson method to solve the resulting eigenvalue problems. For preconditioning, we derive several novel preconditioning schemes based on various preconditioners, including a preconditioner that can be solved by Fast Fourier Transform efficiently. We then conduct intensive numerical experiments for various combinations of eigenvalue solvers and preconditioning schemes. We find that the Krylov-Schur method associated with the Fast Fourier Transform based preconditioner is very efficient. It remarkably outperforms all other eigenvalue solvers with common preconditioners like Jacobi, Symmetric Successive Over Relaxation, and incomplete factorizations. This promising solver can benefit applications like photonic crystal structure optimization.

[1]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[2]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[3]  W. Greub Linear Algebra , 1981 .

[4]  Qiang Du,et al.  Convergence Analysis of a Finite Volume Method for Maxwell's Equations in Nonhomogeneous Media , 2003, SIAM J. Numer. Anal..

[5]  Gerard L. G. Sleijpen,et al.  Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem , 2008, Numer. Linear Algebra Appl..

[6]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[7]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[8]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[9]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[10]  Peter Arbenz A Comparison of Factorization-Free Eigensolvers with Application to Cavity Resonators , 2002, International Conference on Computational Science.

[11]  H. Whitney Geometric Integration Theory , 1957 .

[12]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[13]  Weichung Wang,et al.  Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems , 2007, J. Comput. Phys..

[14]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[15]  M. Shashkov,et al.  Mimetic Discretizations for Maxwell's Equations , 1999 .

[16]  Chien-Cheng Chang,et al.  Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps , 2004 .

[17]  P. Arbenz,et al.  Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems , 2005 .

[18]  J. Z. Zhu,et al.  The finite element method , 1977 .

[19]  Peter Arbenz,et al.  A comparison of solvers for large eigenvalue problems occuring in the design of resonant cavities , 1999, Numer. Linear Algebra Appl..

[20]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[21]  Roy A. Nicolaides,et al.  Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions , 1998, Math. Comput..

[22]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[23]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[24]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[25]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[26]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[27]  J.-C. Verite,et al.  A mixed fem-biem method to solve 3-D eddy-current problems , 1982 .

[28]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[29]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[30]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[31]  E. Süli,et al.  A convergence analysis of Yee's scheme on nonuniform grids , 1994 .

[32]  N. Madsen Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids , 1995 .

[33]  Chien-Chung Chang,et al.  Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[35]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[36]  J. Volakis,et al.  Finite element method for electromagnetics : antennas, microwave circuits, and scattering applications , 1998 .

[37]  G. Mur,et al.  A finite-element method for computing three-dimensional electromagnetic fields in inhomogeneous media , 1985 .

[38]  J. E. Román,et al.  Lanczos Methods in SLEPc , 2006 .

[39]  Jian-Ming Jin,et al.  Computation of cavity resonances using edge-based finite elements , 1992 .

[40]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[41]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[42]  G. W. Stewart,et al.  Addendum to "A Krylov-Schur Algorithm for Large Eigenproblems" , 2002, SIAM J. Matrix Anal. Appl..

[43]  Ralf Hiptmair,et al.  Multilevel Method for Mixed Eigenproblems , 2002, SIAM J. Sci. Comput..

[44]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[45]  M. Hano Finite-Element Analysis of Dielectric-Loaded Waveguides , 1984 .

[46]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[47]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[48]  Valeria Simoncini,et al.  Algebraic formulations for the solution of the nullspace‐free eigenvalue problem using the inexact Shift‐and‐Invert Lanczos method , 2003, Numer. Linear Algebra Appl..