Gas Conversion to Liquid Fuels and Chemicals: The Methanol Route‐Catalysis and Processes Development

1.1. World Gas Reserves The worldwide proven natural gas reserves have been estimated at 179.53 6 10 CM (6337.4 TCF (trillion cubic feet)) of which stranded gas represents approximately half (estimated at 3000 TCF according to International Energy Outlook 2005) while about 30 6 10 CM (1,000 TCF) is located in marginal gas fields. Table 1 shows the world natural gas reserves by country. Consumption of natural gas worldwide is expected to increase by an average of 2.3% annually from 2002 to 2025, compared to projected annual growth

[1]  G. Hutchings,et al.  Methanol conversion to hydrocarbons , 1988 .

[2]  Synthesis and study of catalytic properties of beryllium silicates having zeolite-type structure , 1985 .

[3]  A. Miyamoto,et al.  Highly selective synthesis of light olefins from methanol on a novel Fe-silicate , 1986 .

[4]  R. Sheldon Chemicals from Synthesis Gas , 2020, Synthesis Gas.

[5]  Stacey I. Zones,et al.  Product selectivity in methanol to hydrocarbon conversion for isostructural compositions of AFI and CHA molecular sieves , 1994 .

[6]  C. Catlow,et al.  Generation of Carbenes during Methanol Conversion over Brönsted Acidic Aluminosilicates. A Computational Study , 1997 .

[7]  Clarence Dayton Chang,et al.  Isomorphous substitution in zeolite frameworks: II. Catalytic properties of [B]ZSM-5 , 1985 .

[8]  C. O'connor,et al.  Acidity and catalytic activity of synthetic mica-montmorillonite: Part II: Propene oligomerization , 1986 .

[9]  M. Payne,et al.  In Situ Study of Reactive Intermediates of Methanol in Zeolites from First Principles Calculations , 1997 .

[10]  S. Blaszkowski,et al.  Theoretical Study of the Mechanism of Surface Methoxy and Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons , 1997 .

[11]  W. Wieker,et al.  Coupled conversion of methanol and C4-hydrocarbons (CMHC) on iron-containing ZSM-5 type zeolites , 1990 .

[12]  W. W. Kaeding,et al.  Production of chemicals from methanol: I. Low molecular weight olefins , 1980 .

[13]  S. Blaszkowski,et al.  Theoretical study of C-C bond formation in the methanol to gasoline process , 1997 .

[14]  J. Moffat,et al.  Characterization of sorbed intermediates and implications for the mechanism of chain growth in the conversion of methanol and ethanol to hydrocarbons over 12-tungstophosphoric acid using infrared photoacoustic spectroscopy , 1986 .

[15]  L. Kevan,et al.  Catalytic Study of Methanol-to-Olefins Conversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves: Influence of the Structural Type, Nickel Incorporation, Nickel Location, and Nickel Concentration , 2000 .

[16]  C. Catlow,et al.  SAPO-18 Catalysts and Their Broensted Acid Sites , 1994 .

[17]  D. Kalló,et al.  Catalysis on zeolites , 1988 .

[18]  F. Ng,et al.  The oligomerization of 1-butene using NaY zeolite ion-exchanged with different nickel precursor salts , 1997 .

[19]  L. Kevan,et al.  Electron Spin Resonance and Electron Spin−Echo Modulation Studies of Synthesized NiAPSO-34 Molecular Sieve and Comparison with Ion-Exchanged NiH−SAPO-34 Molecular Sieve , 1999 .

[20]  J. Nováková,et al.  Reactivity of surface species on zeolites in methanol conversion , 1990 .

[21]  J. E. Jackson,et al.  CONVERSION OF METHANOL TO GASOLINE : A NEW MECHANISM FOR FORMATION OF THE FIRST CARBON-CARBON BOND , 1990 .

[22]  Weiguo Song,et al.  An oft-studied reaction that may never have been: direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. , 2002, Journal of the American Chemical Society.

[23]  R. Dimitrova,et al.  Methanol conversion to hydrocarbons on porous aluminosilicates , 2002 .

[24]  A. Clark,et al.  Polymerization of Light Olefins over Nickel Oxide–Silica-Alumina , 1955 .

[25]  Y. Chauvin,et al.  Dimerize ethylene to butene-1 , 1984 .

[26]  D. Pearson Conversion of methanol into hydrocarbons , 1974 .

[27]  Y. Murakami,et al.  Development of long-life dealuminated mordenite for methanol conversion to hydrocarbons. , 1987 .

[28]  Misook Kang,et al.  Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s) , 2000 .

[29]  T. Inui,et al.  A composite zeolite catalyst for olefin synthesis prepared by a novel metal-loading method , 1982 .

[30]  Cyril Knottenbelt,et al.  Mossgas “gas-to-liquid” diesel fuels—an environmentally friendly option , 2002 .

[31]  D. Petersen,et al.  The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta , 2004 .

[32]  Yasumi Shimizu,et al.  CONVERSION OF METHANOL INTO OLEFIN-RICH GASEOUS HYDROCARBONS OVER SUPPORTED ALUMINUM DIHYDROGENPHOSPHATE CATALYST , 1979 .

[33]  C. P. Nicolaides,et al.  Catalytic oligomerization of ethene over nickel-exchanged amorphous silica-alumina; effect of the reaction conditions and modelling of the reaction. , 1987 .

[34]  Michael Stöcker,et al.  Methanol-to-hydrocarbons: catalytic materials and their behavior 1 Dedicated to my wife Wencke Ophau , 1999 .

[35]  T. Mole,et al.  Conversion of methanol to hydrocarbons over ZSM-5 zeolite: An examination of the role of aromatic hydrocarbons using 13carbon- and deuterium-labeled feeds , 1983 .

[36]  C. P. Nicolaides,et al.  Catalytic oligomerization of ethene over nickel-exchanged amorphous silica-aluminas; effect of the acid strength of the support , 1987 .

[37]  EVALUATION OF THE FATE AND TRANSPORT OF METHANOL IN THE ENVIRONMENT , 2002 .

[38]  B. Davis,et al.  Conversion of [14C]methanol and propane mixtures with H-ZSM-5 , 1988 .

[39]  V. Ipatieff Catalytic Polymerization of Gaseous Olefins by Liquid Phosphoric Acid I. Propylene , 1935 .

[40]  R. Anthony,et al.  Effect of feed composition on methanol conversion to light olefins over SAPO-34 , 2001 .

[41]  K. Terblanche VALUE ADDED SYNTHETIC FLUIDS KEY TO MOSSGAS' SUCCESS , 1999 .

[42]  J. F. Haw,et al.  Methylbenzene Chemistry on Zeolite HBeta: Multiple Insights into Methanol-to-Olefin Catalysis , 2002 .

[43]  J. Klinowski,et al.  Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR , 1989, Nature.

[44]  R. Herman Catalytic Conversions of Synthesis Gas and Alcohols to Chemicals , 1984 .

[45]  J. Anderson,et al.  The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts , 1985 .

[46]  J. Verduijn,et al.  The development of an environmental friendly catalytic system for the conversion of olefins , 1997 .

[47]  R. Dimitrova,et al.  Methanol conversion as a test for framework cobalt elucidation in CoAPSO molecular sieves , 1998 .

[48]  T. Inui Structure-Reactivity Relationships in Methanol to Olefin Conversion on Various Microporous Crystalline Catalysts , 1991 .

[49]  Y. Ono,et al.  Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites , 1988 .

[50]  Yoshihiro Inoue,et al.  Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites , 1995 .

[51]  T. Inui,et al.  Effects of decrease in number of acid sites located on the external surface of Ni‐SAPO‐34 crystalline catalyst by the mechanochemical method , 1998 .

[52]  J. Anderson,et al.  Activation of ZSM-5 catalysts , 1980 .

[53]  N. Chen,et al.  Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts , 1979 .

[54]  Y. Murakami,et al.  Acid-leached dealuminated mordenite: effect of acid concentration on catalyst life in methanol conversion , 1989 .

[55]  K. Pant,et al.  Catalytic conversion of methanol to gasoline range hydrocarbons , 2004 .

[56]  C. Chang,et al.  Syngas conversion to ethane over metal-zeolite catalysts , 1984 .

[57]  H. Schulz,et al.  Kinetic regimes of zeolite deactivation and reanimation , 1995 .

[58]  K. Lammertsma,et al.  Onium Ylide chemistry. 1. Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1 .fwdarw. C2 conversion , 1984 .

[59]  C. P. Nicolaides,et al.  Nickel silica-alumina catalysts for ethene oligomerization—control of the selectivity to 1-alkene products , 2003 .

[60]  E. Munson,et al.  Carbon monoxide is neither an intermediate nor a catalyst in MTG chemistry on zeolite HZSM-5 , 1991 .

[61]  T. Inui,et al.  Effects of seed materials on a zeolite and its performance of methanol conversion , 1983 .

[62]  Tomoyuki Mori,et al.  Conversion of Methanol into Hydrocarbons Over Acidic Catalysts , 1981 .

[63]  A. Miyamoto,et al.  Methanol to hydrocarbon conversion on Fe-silicates prepared from Fe2+ and Fe3+ sources , 1986 .

[64]  C. Catlow,et al.  Density functional theory calculations of adsorption and reactivity of methanol at alumino-silicate Brønsted acid centres , 1997 .

[65]  M. Hunger,et al.  Adsorption of Methanol on Brønsted Acid Sites in Zeolite H-ZSM-5 Investigated by Multinuclear Solid-State NMR Spectroscopy , 1996 .

[66]  K. P. Möller,et al.  The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methanol over HZSM-5 , 1999 .

[67]  In situ FTIR studies of methanol and dimethyl ether in ZSM-5 , 1987 .

[68]  S. L. Meisel Gasoline from methanol in one step , 1976 .

[69]  G. Öhlmann,et al.  Handbook of Heterogeneous Catalysis , 1999 .

[70]  J. Bilbao,et al.  Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins , 2005 .

[71]  J. Bilbao,et al.  Regeneration of a catalyst based on a SAPO‐34 used in the transformation of methanol into olefins , 1999 .

[72]  Ivar M. Dahl,et al.  On the reaction mechanism for propene formation in the MTO reaction over SAPO-34 , 1993 .

[73]  Weiguo Song,et al.  Roles for Cyclopentenyl Cations in the Synthesis of Hydrocarbons from Methanol on Zeolite Catalyst HZSM-5 , 2000 .

[74]  C. O'connor,et al.  High-pressure oligomerization of propene over heteropoly acids , 1994 .

[75]  B. Arstad,et al.  The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. , 2001, Journal of the American Chemical Society.

[76]  Dietmar Seyferth,et al.  Comprehensive Organometallic Chemistry , 1984 .

[77]  Weiguo Song,et al.  Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34 , 2000 .

[78]  J. W. Ward,et al.  New Developments in Zeolite Science and Technology , 1986 .

[79]  S. Kolboe,et al.  On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34 , 1996 .

[80]  T. Mole,et al.  Aromatic co-catalysis of methanol conversion over zeolite catalysts , 1983 .

[81]  Brent M. T. Lok,et al.  Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids , 1984 .

[82]  THE CONVERSION OF METHANOL AND OTHER O-COMPOUNDS TO HYDROCARBONS OVER ZEOLITE CATALYSTS , 1979 .

[83]  G. Froment,et al.  Catalytic conversion of methanol to light alkenes on SAPO molecular sieves , 1991 .

[84]  G. Hutchings,et al.  Conversion of Methanol to Hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 Catalysts , 2002 .

[85]  S. Sivaram,et al.  Dimerization of ethylene and propylene catalyzed by transition-metal complexes , 1986 .

[86]  A. Behr,et al.  52 – Alkene and Alkyne Oligomerization, Cooligomerization and Telomerization Reactions , 1982 .

[87]  S. Blaszkowski,et al.  The mechanism of dimethyl ether formation from methanol catalyzed by zeolitic protons , 1996 .

[88]  J. Liang,et al.  Methanol to olefin conversion catalysts , 1999 .

[89]  R. Anthony,et al.  Conversion of coal-based methanol to ethylene , 1977 .

[90]  Y. Ono,et al.  Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites , 1986 .

[91]  J. Moffat,et al.  The properties of heteropoly acids and the conversion of methanol to hydrocarbons , 1982 .

[92]  J. Newsam,et al.  Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth , 1988, Nature.

[93]  C. Chang,et al.  On the existence and role of free radicals in methanol conversion to hydrocarbons over HZSM-5 I. Inhibition by NO , 1989 .

[94]  M. Aramendía,et al.  Catalytic application of zeolites in the methanol conversion to hydrocarbons , 2002 .

[95]  Frederick J. Krambeck,et al.  Chemistry of olefin oligomerization over ZSM-5 catalyst , 1988 .

[96]  S. Wong,et al.  In situ Fourier transform i.r. observation of methylating species in ZSM-5 , 1986 .

[97]  Z. Gabelica,et al.  Molecular shape selectivity of ZSM-5, modified ZSM-5 and ZSM-11 type zeolites , 1981 .

[98]  Misook Kang Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals (II): catalytic performance under various reaction conditions , 1999 .

[99]  C. Chu,et al.  Methanol conversion to olefins over ZSM-5: II. Olefin distribution , 1984 .

[100]  Weiguo Song,et al.  The mechanism of methanol to hydrocarbon catalysis. , 2003, Accounts of chemical research.

[101]  K. Hirao,et al.  A New Mechanism for the First Carbon−Carbon Bond Formation in the MTG Process: A Theoretical Study , 1998 .

[102]  T. Inui,et al.  Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion , 1997 .

[103]  D. Akporiaye,et al.  Synthesis, characterization and catalytic testing of SAPO-18, MgAPO-18, and ZnAPO-18 in the MTO reaction , 1996 .

[104]  Barbara Silvestri,et al.  Physiology of Respiration 2nd ed , 1975 .

[105]  A. Beale,et al.  On the activity, longevity and recyclability of Mn(II) and Co(II) substituted AlPO-18 catalysts for the conversion of methanol to light olefins , 2003 .

[106]  De Chen,et al.  The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction , 1999 .

[107]  G. Hutchings,et al.  Hydrocarbon formation from methylating agents over the zeolite catalyst ZSM-5. Comments on the mechanism of carbon–carbon bond and methane formation , 1987 .

[108]  D. Akolekar Investigations on the characteristics, surface, acidity/acid strength distribution and catalytic properties of the zinc-substituted aluminophosphate of type 36 molecular sieve , 1994 .

[109]  Ø. Mikkelsen,et al.  The conversion of methanol to hydrocarbons over zeolite H-beta , 1999 .

[110]  J. Klinowski,et al.  In situ solid-state NMR studies of the catalytic conversion of methanol on the molecular sieve SAPO-34 , 1990 .

[111]  Joseph Haggin,et al.  Aluminophosphates Broaden Shape Selective Catalyst Types: New family of microporous inorganic solids developed by Carbide has properties similar to zeolites, likely will find variety of uses , 1983 .

[112]  M. Misono,et al.  Catalysis by heteropoly compounds x. Synthesis of lower olefins by conversion of dimethyl ether over 12-tungstophosphates , 1986 .

[113]  Arthur M. Squires,et al.  Effect of axial gas dispersion on MTO light-olefin yield: Microreactor data , 1996 .

[114]  Tomoyuki Mori,et al.  Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite , 1981 .

[115]  M. S. Spencer Catalysis by Zeolites , 1986 .

[116]  G. Froment,et al.  Catalytic conversion of methanol into light alkenes on mordenite-like zeolites , 1993 .

[117]  Ronghui Wang,et al.  CHARACTERISTICS AND PERFORMANCE OF SAPO-34 CATALYST FOR METHANOL-TO-OLEFIN CONVERSION , 1990 .

[118]  C. Chu,et al.  Methanol conversion to olefins over ZSM-5. I: Effect of temperature and zeolite SiO2/Al2O3 , 1984 .

[119]  Z. Gabelica,et al.  Methanol conversion on acidic ZSM-5, offretite, and mordenite zeolites: A comparative study of the formation and stability of coke deposits , 1981 .

[120]  Y. Konishi,et al.  Catalysis by Heteropoly Compounds. III. The Structure and Properties of 12-Heteropolyacids of Molybdenum and Tungsten (H3PMo12−xWxO40) and Their Salts Pertinent to Heterogeneous Catalysis , 1982 .

[121]  M. M. Wu,et al.  Mobil Zeolite Catalysts for Monomers , 1984, Catalysis and Surface Science.

[122]  M. Benaglia,et al.  Gazz. Chim. Ital , 1995 .

[123]  B. L. Crynes,et al.  Novel production methods for ethylene, light hydrocarbons, and aromatics , 1992 .

[124]  G. Hutchings,et al.  Methanol conversion to hydrocarbons over the zeolite catalyst H-ZSM-5 in the presence of oxygen and nitric oxide: further evidence against a radical reaction mechanism , 1987 .

[125]  G. Froment,et al.  The conversion of methanol to olefins: a transient kinetic study , 1999 .

[126]  N. M. Cullinane,et al.  The preparation of methylpyridines by catalytic methods , 1948 .

[127]  R. D. Shannon,et al.  Properties of boron-substituted ZSM-5 and ZSM-11 zeolites , 1987 .

[128]  R. Cooney,et al.  A Fourier-transform infrared spectral study of H-ZSM-5 surface sites and reactivity sequences in methanol conversion , 1984 .

[129]  J. Moffat,et al.  Conversion of methanol into hydrocarbons over ammonium 12-tungstophosphate , 1983 .

[130]  S. Hotevar Acidity and catalytic activity of McAPSO-34 (Me = Co, Mn, Cr), SAPO-34, and H-ZSM-5 molecular sieves in methanol dehydration , 1992 .

[131]  M. Misono,et al.  Catalysis by Heteropoly Compounds , 1997 .

[132]  P. Reich,et al.  Synthesis of olefins from methanol on alumina-supported H4[SiW12O40] catalysts , 1987 .

[133]  T. Inui,et al.  Considerable reduction in crystallization time in the preparation of a new type of zeolite catalyst for olefin synthesis from methanol , 1981 .

[134]  J. Sauer,et al.  1H NMR Chemical Shifts of Ammonia, Methanol, and Water Molecules Interacting with Broensted Acid Sites of Zeolite Catalysts: Ab-Initio Calculations , 1994 .

[135]  E. Freund,et al.  Comparison between small port and large port mordenites , 1985 .

[136]  T. Sano,et al.  Deactivation resistance of ZSM-5-type zeolites containing alkaline earth metals used for methanol conversion , 1988 .

[137]  F. J. Waller,et al.  Methanol technology developments for the new millennium , 2001 .

[138]  G. Bellussi,et al.  Amorphous mesoporous silica-alumina with controlled pore size as acid catalysts , 1994 .

[139]  H. Adkins,et al.  The Behavior of Methanol over Aluminum and Zinc Oxides , 1927 .

[140]  W. M. Meier,et al.  The structure determination and rietveld refinement of the aluminophosphate AIPO4-18 , 1991 .

[141]  L. Kevan,et al.  Catalytic Conversion of Methanol to Olefins on SAPO-n (n = 11, 34, and 35), CrAPSO-n, and Cr−SAPO-n Molecular Sieves , 2000 .

[142]  J. Anderson,et al.  Mechanism of some conversions over ZSM-5 catalyst , 1980 .

[143]  S. Tsang,et al.  Natural gas conversion , 1997 .

[144]  R. Gómez,et al.  Catalytic behavior of sulfated TiO2 in light olefins oligomerization , 2005 .

[145]  J. Heveling,et al.  Activity and selectivity of nickel-exchanged silica-alumina catalysts for the oligomerization of propene and 1-butene into distillate-range products , 2003 .

[146]  Weiguo Song,et al.  PULSE-QUENCH CATALYTIC REACTOR STUDIES REVEAL A CARBON-POOL MECHANISM IN METHANOL-TO-GASOLINE CHEMISTRY ON ZEOLITE HZSM-5 , 1998 .

[147]  G. Hutchings,et al.  Hydrocarbon formation from methanol and dimethyl ether using WO3/Al2O3 and H-ZSM-5 catalysts. A mechanistic investigation using model reagents , 1988 .

[148]  M. Payne,et al.  First principles calculation of the free energy barrier for the reaction of methanol in a zeolite catalyst , 2001 .

[149]  A. Chellappa,et al.  Supercritical alkylation and butene dimerization over sulfated zirconia and iron-manganese promoted sulfated zirconia catalysts , 2001 .

[150]  J. Moffat,et al.  Elucidation of the Mechanism of Dehydration of Methanol over 12-Tungstophosphoric Acid Using Infrared Photoacoustic Spectroscopy , 1985 .

[151]  W. W. Kaeding Conversion of methanol to hydrocarbons: III. Methylation, ethylation, and propylation of benzene with methanol , 1988 .

[152]  M. Sugimoto,et al.  Correlation between the crystal zize and catalytic properties of ZSM-5 zeolites , 1987 .

[153]  G. Hutchings,et al.  The Conversion of Methanol and Other O-Compounds to Hydrocarbons over Zeolite β , 1994 .

[154]  Terje Fuglerud,et al.  Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process , 2005 .

[155]  U. Olsbye,et al.  Conversion of Methanol to Hydrocarbons: The Reactions of the Heptamethylbenzenium Cation over Zeolite H-Beta , 2004 .

[156]  R. Anthony,et al.  Conversion of Methanol to Low Molecular Weight Olefins with Heterogeneous Catalysts , 1984 .

[157]  Warren W. Kaeding,et al.  SELECTIVE ALKYLATION OF TOLUENE WITH METHANOL TO PRODUCE PARA-XYLENE , 1981 .

[158]  M. Payne,et al.  Role of the Zeolitic Environment in Catalytic Activation of Methanol , 1999 .

[159]  E. C. Alyea,et al.  Methanol conversion to hydrocarbons over WO3/HZSM-5 catalysts prepared by metal oxide vapor synthesis , 1995 .

[160]  X. Jiang,et al.  Methanol to hydrocarbons: spectroscopic studies and the significance of extra-framework aluminium , 1999 .

[161]  T. Inui,et al.  Synthesis of NiAPSO-34 catalysts containing a larger concentration of Ni and effect of its sulfidation on methanol conversion , 1999 .

[162]  T. Baba,et al.  CONVERSION OF METHANOL INTO HYDROCARBONS CATALYZED BY METAL SALTS OF HETEROPOLYACIDS , 1981 .

[163]  David N. Nakamura Ethylene capacity rising, margins continue to suffer , 2002 .

[164]  Kanji Sakata,et al.  Acid-Redox Blfunctional Properties of Heteropoly Compounds of Molybdenum and Tungsten Correlated with Catalytic Activity for Oxidation of Methacrolein , 1981 .

[165]  C. O'connor,et al.  Propene oligomerization over nickel-loaded silica-alumina , 1989 .

[166]  R. P. Townsend,et al.  Silicoaluminophosphate number eighteen (SAPO-18): a new microporous solid acid catalyst , 1994 .

[167]  W. W. Kaeding Shape-selective reactions with zeolite catalysts: V. Alkylation or disproportionation of ethylbenzene to produce ϱ-diethylbenzene , 1985 .

[168]  G. Hutchings,et al.  Methanol and dimethyl ether conversion to hydrocarbons using tungsten trioxide/alumina as catalyst.A study of Catalyst reactivationA study of catalyst reactivation , 1988 .

[169]  J. Moffat,et al.  The catalysis of methanol and ethanol conversions on molybdenum and tungsten heteropoly compounds , 1985 .

[170]  T. Pakkanen,et al.  Shape selectivity of ZSM-5 zeolite modified with chemical vapor deposition of silicon and germanium alkoxides , 1997 .

[171]  C. O'connor,et al.  The oligomerization of C4 alkenes over cationic exchange resins , 1985 .

[172]  J. Moffat,et al.  Characterization of 12-tungstophosphoric acid and related salts using photoacoustic spectroscopy in the infrared region: II. Interactions with pyridine , 1984 .

[173]  Ivar M. Dahl,et al.  On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34 2. Isotopic Labeling Studies of the Co-reaction of Propene and Methanol , 1994 .

[174]  R. Espinoza Oligomerization vs. methylation of propene in the conversion of dimethyl ether (or methanol) to hydrocarbons , 1984 .

[175]  F. Ng,et al.  The oligomerization of butenes with partially alkali exchanged NiNaY zeolite catalysts , 1997 .

[176]  T. Inui,et al.  New aspects in catalytic performance of novel metallosilicates having the pentasil pore-opening structure , 1986 .

[177]  C. O'connor,et al.  Propene oligomerization over synthetic mica-montmorillonite (SMM) and SMM incorporating nickel, zinc and cobalt , 1988 .

[178]  R. Anthony,et al.  CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT OLEFINS , 1980 .

[179]  M. Aramendía,et al.  Catalytic use of zeolites in the Prins reaction of arylalkenes , 2001 .

[180]  R. Bridger,et al.  Shape-selective oligomerization of alkenes to near-linear hydrocarbons by zeolite catalysis , 1996 .

[181]  E. Derouane New Aspects of Molecular Shape-Selectivity: Catalysis by Zeolite ZSM - 5 , 1980 .

[182]  T. Mildner,et al.  Temperature-switched MAS NMR. A new method for time-resolved in situ studies of reaction steps in heterogeneous catalysis * , 1994 .

[183]  F. J. Krambeck,et al.  Shaping process makes fuels , 1985 .

[184]  Clarence Dayton Chang,et al.  Methanol Conversion to Light Olefins , 1984, Catalysis and Surface Science.

[185]  D. B. Luk'yanov Effect of SiO2Al2O3 ratio on the activity of HZSM-5 zeolites in the different steps of methanol conversion to hydrocarbons , 1992 .

[186]  G. Hutchings,et al.  Methanol conversion to hydrocarbons: investigation of the possible role of carbon monoxide in the formation of the initial carbon-carbon bond , 1990 .

[187]  G. Brunner Reaction of HZSM—5 with water as studied by i.r. spectroscopy , 1987 .

[188]  S. Blaszkowski,et al.  Activation of C-H and C-C Bonds by an Acidic Zeolite: A Density Functional Study , 1996 .

[189]  G. Froment,et al.  Production of light alkenes from methanol on ZSM-5 catalysts , 1991 .

[190]  W. W. Kaeding,et al.  Shape-selective reactions with zeolite catalysts. IV: Alkylation of toluene with ethylene to produce p-ethyltoluene , 1984 .

[191]  Stanley G. Brandenberger,et al.  One-step catalytic synthesis of 2,2,3-trimethylbutane from methanol , 1978 .

[192]  A. Auroux,et al.  Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite , 1982 .

[193]  Y. Ono Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites , 1987 .

[194]  Y. Ono,et al.  Transformation of but-1-ene into aromatic hydrocarbons over ZSM-5 zeolites , 1987 .

[195]  P. Salvador,et al.  Surface reactivity of zeolites type H-Y and Na-Y with methanol , 1977 .

[196]  B. Arstad,et al.  Methanol-to-hydrocarbons reaction over SAPO-34. Molecules confined in the catalyst cavities at short time on stream , 2001 .

[197]  Tomoyuki Mori,et al.  The Autocatalytic Nature of Methanol Conversion over ZSM-5 Zeolites , 1979 .

[198]  M. Seehra,et al.  Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves , 2003 .

[199]  A. Al-Jarallah,et al.  Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes , 1997 .

[200]  Roger Hunter,et al.  Hydrocarbon formation from methanol and dimethyl ether: a review of the experimental observations concerning the mechanism of formation of the primary products , 1990 .

[201]  F. J. Krambeck,et al.  Conversion of propylene and butylene over ZSM‐5 catalyst , 1986 .

[202]  J. Klinowski,et al.  Solid-state NMR studies of the shape-selective catalytic conversion of methanol into gasoline on zeolite ZSM-5 , 1990 .

[203]  C. Stander,et al.  Catalytic conversion of methanol to hydrocarbons over amorphous or zeolitic silica-alumina , 1983 .

[204]  M. Misono,et al.  Improvement in alkene selectivity in the conversion of dimethyl ether into hydrocarbons by control of absorption by heteropoly compounds , 1984 .

[205]  T. Inui,et al.  Olefin synthesis from methanol on a modified zeolite catalyst , 1983 .

[206]  J. Nagy,et al.  In situ characterization of carbonaceous residues from zeolite-catalysed reactions using high resolution solid state 13C-n.m.r. spectroscopy , 1982 .

[207]  C. Chang,et al.  Process Studies on the Conversion of Methanol to Gasoline , 1978 .

[208]  W. Garwood,et al.  Industrial Application of Shape-Selective Catalysis , 1986 .

[209]  G. Maciel,et al.  Carbon-13 NMR study of methanol in HY zeolite , 1986 .

[210]  A. Al-Jarallah,et al.  Barium modification of a high-silica zeolite for methanol conversion to light alkenes , 1992 .

[211]  G. Hutchings,et al.  Methanol conversion to hydrocarbons over zeolite H-ZSM-5: Investigation of the role of CO and ketene in the formation of the initial C-C bond , 1993 .

[212]  P. Rodewald,et al.  Aromatics, light olefins and gasoline from methanol: Mechanistic pathways with ZSM-5 zeolite catalyst , 1982 .

[213]  Ø. Mikkelsen,et al.  Use of isotopic labeling for mechanistic studies of the methanol-to-hydrocarbons reaction. Methylation of toluene with methanol over H-ZSM-5, H-mordenite and H-beta , 2000 .

[214]  R. Gómez,et al.  Room temperature olefins oligomerization over sulfated titania. , 2004, Chemical communications.

[215]  Jeffrey T. Miller,et al.  A multitechnique characterization of dealuminated mordenites , 1988 .

[216]  L. V. MacDougall Methanol to fuels routes: the achievements and remaining problems , 1991 .

[217]  H. Yoshida,et al.  Formation of multi-branched-chain aliphatics in methanol conversion over modified mordenites , 1998 .

[218]  J. Nagy,et al.  Adsorption and conversion of ethylene on H-ZSM-5 zeolite studied by 13C NMR spectroscopy , 1981 .

[219]  J. Nagy,et al.  Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite , 1978 .

[220]  R. Darcy,et al.  Free radicals in dimethyl ether on H-ZSM-5 zeolite. A novel dimension of heterogeneous catalysis , 1986 .

[221]  A. Miyamoto,et al.  Vanadosilicate catalysts prepared from different vanadium sources and their characteristics in methanol to hydrocarbon conversion , 1986 .

[222]  V. Bosacek,et al.  Formation of surface-bonded methoxy groups in the sorption of methanol and methyl iodide on zeolites studied by carbon-13 MAS NMR spectroscopy , 1993 .

[223]  J. Vartuli,et al.  Catalytic conversion of methanol to linear olefins using ZSM-35 catalyst , 1997 .

[224]  Dirk C. Mattfeld,et al.  A Computational Study , 1996 .

[225]  D. Olson,et al.  Chemical and physical properties of the ZSM-5 substitutional series , 1980 .

[226]  YonedaYukio,et al.  SELECTIVE SYNTHESIS OF LIGHT OLEFINS FROM DIMETHYL ETHER OVER ACIDIC SALTS OF H3PW12O40 WITH 1,3,5-TRIAZINE , 1982 .

[227]  C. O'connor,et al.  Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34 , 1996 .

[228]  L. Riekert,et al.  Sorption and catalytic reaction in Pentasil zeolites. Influence of preparation and crystal size on equilibria and kinetics , 1981 .

[229]  J. Bilbao,et al.  Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons , 1996 .

[230]  Sami Matar,et al.  From Hydrocarbons to Petrochemicals , 1981 .

[231]  J. Nováková,et al.  Catalytic activity of dealuminated Y and HZSM-5 zeolites measured by the temperature-programmed desorption of small amounts of preadsorbed methanol and by the low-pressure flow reaction of methanol , 1984 .

[232]  U. Olsbye,et al.  Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion , 2003 .

[233]  Clarence Dayton Chang,et al.  The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts: II. Pressure effects , 1977 .

[234]  M. Howden Zeolite ZSM-5 containing boron instead of aluminium atoms in the framework , 1985 .

[235]  小野 嘉夫,et al.  Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites. , 1987 .

[236]  E. Munson,et al.  NMR observation of trimethyloxonium formation from dimethyl ether on zeolite HZSM-5 , 1991 .

[237]  B. Bogdanovlć Selectivity Control in Nickel-Catalyzed Olefin Oligomerization , 1979 .

[238]  T. Inui,et al.  Highly selective synthesis of ethene from methanol on a novel nickel–silicoaluminophosphate catalyst , 1990 .

[239]  Clarence Dayton Chang,et al.  Hydrocarbons from Methanol , 1983 .

[240]  M. Payne,et al.  Methanol in microporous materials from first principles , 1999 .

[241]  W. J. Reagan,et al.  Evidence of autocatalysis in methanol to hydrocarbon reactions over zeolite catalysts , 1979 .

[242]  Carl R.F. Lund,et al.  Conversion of methanol to hydrocarbons over silica-alumina. Selective Formation of Lower Olefins , 1989 .

[243]  H. Pines The chemistry of catalytic hydrocarbon conversions , 1981 .

[244]  R. Lapierre,et al.  On the mechanism of methanol conversion to hydrocarbons over HZSM-5 , 1982 .

[245]  A. Miyamoto,et al.  Methanol conversion to hydrocarbons on novel vanadosilicate catalysts , 1985 .

[246]  I. Kozhevnikov,et al.  Coking and regeneration of H3PW12O40/SiO2 catalysts , 2001 .

[247]  G. Bellussi,et al.  Olefins oligomerization: thermodynamics and kinetics over a mesoporous silica–alumina , 1999 .

[248]  F. Patcas The methanol-to-olefins conversion over zeolite-coated ceramic foams , 2005 .

[249]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[250]  Kazuhiro Kato,et al.  Mordenite with long life and selectivity for methanol conversion to gasoline: mordenite modified by barium ion exchange, dealumination and chemical vapor deposition of silicon methoxide , 1990 .

[251]  Weiguo Song,et al.  Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34. , 2001, Journal of the American Chemical Society.

[252]  T. Baba,et al.  Conversion of methanol into hydrocarbons catalysed by metal salts of heteropolyacids , 1981 .

[253]  F. Fetting,et al.  Selektive Umwandlung von Methanol in C2 - bis C5-Olefine an Zeolith-Katalysatoren , 1980 .

[254]  G. Olah Higher coordinate (hypercarbon containing) carbocations and their role in electrophilic reactions of hydrocarbons , 1981 .

[255]  R. Espinoza,et al.  Light olefin formation in the catalytic conversion of methanol over zeolite ZSM-5 , 1984 .

[256]  G. Bellussi,et al.  Reaction and deactivation study of mesoporous silica-alumina (MSA) in propene oligomerisation , 2003 .

[257]  Frerich J. Keil,et al.  Methanol-to-hydrocarbons: process technology , 1999 .

[258]  Colin Grant,et al.  7th World Congress of Chemical Engineering: A Review , 2005 .

[259]  W. M. Meier,et al.  Structure of synthetic zeolite ZSM-5 , 1978, Nature.

[260]  C. Rhodes Properties and applications of Zeolites , 2010, Science progress.

[261]  E. Munson,et al.  In situ solid-state NMR study of methanol-to-gasoline chemistry in zeolite HZSM-5 , 1992 .

[262]  R. Dessau On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins , 1986 .

[263]  T. Baba,et al.  The conversion of methanol into hydrocarbons over copper (II) dodecatungstophosphate , 1983 .

[264]  A. Sleight,et al.  Structure-activity and selectivity relationships in heterogeneous catalysis : proceedings of the ACS Symposium on Structure-Activity Relationships in Heterogeneous Catalysis, Boston, MA, April 22-27, 1990 , 1991 .

[265]  J. Sohn,et al.  Acidity of nickel silicate and its bearing on the catalytic activity for ethylene dimerization and butene isomerization , 1980 .

[266]  M. Abraha,et al.  Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor , 2004 .

[267]  Joachim Werther,et al.  Methanol to olefins—prediction of the performance of a circulating fluidized-bed reactor on the basis of kinetic experiments in a fixed-bed reactor , 1994 .

[268]  J. H. Karchmer,et al.  Propylene Polymerization in Packed Reactor - Liquid Phosphoric Acid Catalyst , 1956 .

[269]  Weiguo Song,et al.  A Persistent Carbenium Ion on the Methanol-to-Olefin Catalyst HSAPO-34: Acetone Shows the Way , 2001 .

[270]  E. Schreier,et al.  Acidity and catalytic properties of MeAPO-5 molecular sieves , 1998 .

[271]  P. Riemer,et al.  Catalytic conversion of mixtures of methanol and aromatic hydrocarbons over the porous aluminosilicate catalyst HTDZ-48 , 1986 .

[272]  S. C. Roy,et al.  Synthesis of lower olefins from methanol and subsequent conversion of ethylene to higher olefins via oligomerisation , 2004 .

[273]  J. Bilbao,et al.  Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins , 1999 .

[274]  N. Gnep,et al.  Selective transformation of methanol into light olefins over a mordenite catalyst: reaction scheme and mechanism , 1999 .

[275]  S. A. Tabak,et al.  Conversion of methanol over ZSM-5 to fuels and chemicals , 1990 .

[276]  J. Batista,et al.  Acidity and Catalytic Activity of MeAPSO-44 (Me = Co, Mn, Cr, Zn, Mg), SAPO-44, AIPO4-5, and AIPO4-14 Molecular Sieves in Methanol Dehydration , 1993 .

[277]  T. Hattori,et al.  Role of acid property of various zeolites in the methanol conversion to hydrocarbons , 1984 .

[278]  M. Bjørgen,et al.  The conversion of methanol to hydrocarbons over dealuminated zeolite H-beta , 2002 .

[279]  Paul T. Barger,et al.  The characteristics of SAPO-34 which influence the conversion of methanol to light olefins , 1999 .

[280]  Seung Wha,et al.  Synthesis and characterization of iron-modified ZSM-5 , 1991 .

[281]  M. Misono,et al.  Catalysis by heteropoly compounds. VI. The role of the bulk acid sites in catalytic reactions over NaxH3 − xPW12O40 , 1983 .

[282]  W. S. Veeman,et al.  Study of the transformation of small-port into large-port mordenite by magic-angle spinning NMR and infrared spectroscopy , 1988 .

[283]  J. Nagy,et al.  A 13C-N.M.R. investigation of the conversion of methanol on H-ZSM-5 in the presence of carbon monoxide , 1979 .

[284]  Y. Inoue,et al.  Ag-ZSM-5 as a Catalyst for Aromatization of Alkanes, Alkenes, and Methanol , 1994 .

[285]  C. P. Nicolaides,et al.  Oligomerization of Ethene In a Slurry Reactor Using a Nickel(II)-Exchanged Silica–Alumina Catalyst , 2001 .

[286]  Deng Jingfa,et al.  Studies on the properties of water in and conversion of methanol into dimethyl ether on H3PW12O40 , 1989 .

[287]  R. Lapierre,et al.  On the mechanism of methanol conversion to hydrocarbons over HZSM-5 , 1982 .

[288]  E. Leupold,et al.  A Selective Pathway from Methanol to Ethylene and Propene , 1980 .

[289]  P. Riemer,et al.  Catalytic conversion of mixtures of methanol and alkenes over the porous alumino-silicate HTDZ-48 , 1986 .

[290]  L. Riekert,et al.  Formation of ethene and propene from methanol on zeolite ZSM-5: I. Investigation of Rate and Selectivity in a Batch Reactor , 1988 .

[291]  J. Sauer,et al.  Interaction of methanol with Broensted acid sites of zeolite catalysts: an ab initio study , 1995 .

[292]  T. Mole Conversion of methanol to ethylene over ZSM-5 zeolite: A reexamination of the oxonium-ylide hypothesis, using 13carbon- and deuterium-labeled feeds , 1983 .

[293]  G. Froment,et al.  Zeolite catalysis in the conversion of methanol into olefins , 1992 .

[294]  V. Fel'dblyum,et al.  Dimerisation of Alkenes , 1968 .

[295]  C. P. Nicolaides,et al.  Catalytic oligomerization of ethene over nickel-exchanged amorphous silica-alumina; Effect of the nickel concentration , 1987 .

[296]  S. Cȩckiewicz Methanol conversion to hydrocarbons and dimethyl ether on decationized zeolite T , 1981 .

[297]  J. Anderson,et al.  Reactions on ZSM-5-type zeolite catalysts , 1979 .

[298]  R. Espinoza Catalytic conversion of methanol to hydrocarbons: Autocatalysis reconsidered , 1986 .

[299]  Martin Kumar Patel,et al.  Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes , 2006 .

[300]  T. Baba,et al.  The Conversion of Methanol into Hydrocarbons over Metal Salts of Heteropolyacids , 1982 .

[301]  Weiguo Song,et al.  Selective Synthesis of Methylnaphthalenes in HSAPO-34 Cages and Their Function as Reaction Centers in Methanol-to-Olefin Catalysis , 2001 .

[302]  T. Hattori,et al.  Selective formation of alkenes in the conversion of methanol into hydrocarbons on barium ion-exchanged mordenite , 1981 .

[303]  A. Corma,et al.  Formation of Surface Methoxy Groups on H-Zeolites from Methanol. A Quantum Chemical Study , 1995 .

[304]  S. T. Sie,et al.  Zeolites as Catalysts in Industrial Processes , 1999 .

[305]  J. Weitkamp,et al.  Catalysis and zeolites : fundamentals and applications , 1999 .