On the Origin of Sub-subgiant Stars. III. Formation Frequencies

Sub-subgiants are a new class of stars that are optically redder than normal main-sequence stars and fainter than normal subgiant stars. Sub-subgiants, and the possibly related red stragglers (which fall to the red of the giant branch), occupy a region of the color-magnitude diagram that is predicted to be devoid of stars by standard stellar evolution theory. In previous papers we presented the observed demographics of these sources and defined possible theoretical formation channels through isolated binary evolution, the rapid stripping of a subgiant's envelope, and stellar collisions. Sub-subgiants offer key tests for single- and binary-star evolution and stellar collision models. In this paper, we synthesize these findings to discuss the formation frequencies through each of these channels. The empirical data, our analytic formation rate calculations, and analyses of sub-subgiants in a large grid of Monte Carlo globular cluster models suggest that the binary evolution channels may be the most prevalent, though all channels appear to be viable routes to sub-subgiant creation (especially in higher-mass globular clusters). Multiple formation channels may operate simultaneously to produce the observed sub-subgiant population. Finally, many of these formation pathways can produce stars in both the sub-subgiant and red straggler (and blue straggler) regions of the color-magnitude diagram, in some cases as different stages along the same evolutionary sequence.

[1]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[2]  P. Eggleton Evolutionary Processes in Binary and Multiple Stars , 2006 .

[3]  Simon Portegies Zwart,et al.  Monte Carlo Simulations of Globular Cluster Evolution. I. Method and Test Calculations , 2000 .

[4]  A. Geller,et al.  Small‐N collisional dynamics: pushing into the realm of not‐so‐small N , 2012, 1207.2469.

[5]  B. Tofflemire,et al.  WIYN OPEN CLUSTER STUDY. LIX. RADIAL VELOCITY MEMBERSHIP OF THE EVOLVED POPULATION OF THE OLD OPEN CLUSTER NGC 6791 , 2014, 1408.3117.

[6]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[7]  A. Sollima The evolution of the binary population in globular clusters: a full analytical computation , 2008, 0804.4107.

[8]  G. S. Burley,et al.  THE CLUSTER AGES EXPERIMENT (CASE). IV. ANALYSIS OF THE ECLIPSING BINARY V69 IN THE GLOBULAR CLUSTER 47 Tuc , 2009, 0910.4262.

[9]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. RELATIVE AGES , 2008, 0812.4541.

[10]  Giampaolo Piotto,et al.  Blue straggler production in globular clusters , 2004 .

[11]  C. Knigge,et al.  The origins of blue stragglers and binarity in globular clusters , 2012, 1210.0542.

[12]  F. Ferraro,et al.  The correlation between blue straggler and binary fractions in the core of Galactic globular clusters , 2008, 0801.4511.

[13]  F. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. IV. Direct Integration of Strong Interactions , 2006, astro-ph/0608261.

[14]  S. Chatterjee,et al.  MONTE CARLO SIMULATIONS OF GLOBULAR CLUSTER EVOLUTION. VI. THE INFLUENCE OF AN INTERMEDIATE-MASS BLACK HOLE , 2009, 0910.5293.

[15]  D. Latham,et al.  The spatial distribution of spectroscopic binaries and blue stragglers in the open cluster M67 , 1986 .

[16]  AN ECLIPSING MILLISECOND PULSAR WITH A POSSIBLE MAIN-SEQUENCE COMPANION IN NGC 6397 , 2001, astro-ph/0108250.

[17]  S. Meibom,et al.  A Robust Measure of Tidal Circularization in Coeval Binary Populations: The Solar-Type Spectroscopic Binary Population in the Open Cluster M35 , 2004, astro-ph/0412147.

[18]  Andrew W. Serio,et al.  ANALYSIS OF DETACHED ECLIPSING BINARIES NEAR THE TURNOFF OF THE OPEN CLUSTER NGC 7142 , 2013, 1306.5843.

[19]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[20]  R. Mathieu,et al.  DIRECT N-BODY MODELING OF THE OLD OPEN CLUSTER NGC 188: A DETAILED COMPARISON OF THEORETICAL AND OBSERVED BINARY STAR AND BLUE STRAGGLER POPULATIONS , 2012, 1210.1575.

[21]  H. Harris,et al.  WIYN OPEN CLUSTER STUDY. XXXII. STELLAR RADIAL VELOCITIES IN THE OLD OPEN CLUSTER NGC 188 , 2015, 1512.04983.

[22]  A prescription and fast code for the long-term evolution of star clusters , 2012, 1203.4744.

[23]  F. Rasio,et al.  Stellar collisions during binary–binary and binary–single star interactions , 2004, astro-ph/0401004.

[24]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .

[25]  A prescription and fast code for the long-term evolution of star clusters - II. Unbalanced and core evolution , 2013, 1310.3631.

[26]  Jr.,et al.  Evolution of Stellar Collision Products in Globular Clusters. II. Off-Axis Collisions , 2000, astro-ph/0008254.

[27]  J. Lattanzio,et al.  BLUE STRAGGLERS AFTER THE MAIN SEQUENCE , 2008, 0811.2974.

[28]  Luigi Pulone,et al.  ON THE ABSOLUTE AGE OF THE METAL-RICH GLOBULAR M71 (NGC 6838). I. OPTICAL PHOTOMETRY , 2015, 1506.01180.

[29]  Diameters of Open Star Clusters , 2005, astro-ph/0511702.

[30]  D. Latham,et al.  STELLAR RADIAL VELOCITIES IN THE OLD OPEN CLUSTER M67 (NGC 2682). I. MEMBERSHIPS, BINARIES, AND KINEMATICS , 2015, 1507.01949.

[31]  R. Mathieu,et al.  On the Origin of Sub-subgiant Stars. I. Demographics , 2017, 1703.10167.

[32]  J. Anderson,et al.  The ACS survey of Galactic globular clusters. XII. Photometric binaries along the main sequence , 2011, 1111.0552.

[33]  Gilles Chabrier,et al.  Evolution of low-mass star and brown dwarf eclipsing binaries , 2007, 0707.1792.

[34]  Melvyn B. Davies,et al.  Blue stragglers as stellar collision products: the angular momentum question , 2005 .

[35]  W. Mccrea Extended Main-Sequence of Some Stellar Clusters , 1964 .

[36]  The open cluster NGC 7142: interstellar extinction, distance and age , 2013, 1312.1109.

[37]  J. R. Hurley,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[38]  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[39]  D. Stinebring,et al.  The eclipsing millisecond pulsar PSR 1957 + 20 , 1990 .

[40]  F. Grundahl,et al.  AGE AND DISTANCE FOR THE OLD OPEN CLUSTER NGC 188 FROM THE ECLIPSING BINARY MEMBER V 12 , 2009, 0903.3566.

[41]  A. Geller,et al.  INTERRUPTED STELLAR ENCOUNTERS IN STAR CLUSTERS , 2015, 1506.08830.

[42]  R. Mathieu,et al.  A binary star fraction of 76 per cent and unusual orbit parameters for the blue stragglers of NGC 188 , 2009, Nature.

[43]  S. Chatterjee,et al.  MOCK OBSERVATIONS OF BLUE STRAGGLERS IN GLOBULAR CLUSTER MODELS , 2013, 1303.2667.

[44]  Garching,et al.  The age of the oldest Open Clusters , 2003, astro-ph/0310363.

[45]  S. Chatterjee,et al.  STELLAR COLLISIONS AND BLUE STRAGGLER STARS IN DENSE GLOBULAR CLUSTERS , 2013, 1302.7284.

[46]  N. Leigh,et al.  Back to the Future: Estimating Initial Globular Cluster Masses from their Present Day Stellar Mass Functions , 2015, 1508.00577.

[47]  K. T. Hole,et al.  WIYN OPEN CLUSTER STUDY. XXIV. STELLAR RADIAL-VELOCITY MEASUREMENTS IN NGC 6819 , 2009, 0902.4040.

[48]  S. Aarseth,et al.  A complete N-body model of the old open cluster M67 , 2005, astro-ph/0507239.

[49]  S. Meibom,et al.  A NEW LOOK AT THE OLD STAR CLUSTER NGC 6791 , 2011, 1104.5473.

[50]  A. Rastorguev,et al.  Numerical simulations of tidal tails for the open cluster NGC 188 , 2010 .

[51]  R. Mathieu,et al.  WIYN OPEN CLUSTER STUDY. XLVIII. THE HARD-BINARY POPULATION OF NGC 188 , 2011, 1111.3950.

[52]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[53]  F. Camilo,et al.  Accurate Mass Ratio and Heating Effects in the Dual-Line Millisecond Binary Pulsar in NGC 6397 , 2003, astro-ph/0301244.

[54]  A. Geller,et al.  INTERRUPTED BINARY MASS TRANSFER IN STAR CLUSTERS , 2016, 1601.00651.

[55]  Elena Schilbach,et al.  Tidal radii and masses of open clusters , 2008 .

[56]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[57]  S. Meibom,et al.  WIYN OPEN CLUSTER STUDY. LX. SPECTROSCOPIC BINARY ORBITS IN NGC 6819 , 2014, 1408.0239.

[58]  C. Knigge,et al.  A binary origin for ‘blue stragglers’ in globular clusters , 2009, Nature.

[59]  R. Mathieu,et al.  IMPLICATIONS FOR THE FORMATION OF BLUE STRAGGLER STARS FROM HST ULTRAVIOLET OBSERVATIONS OF NGC 188 , 2015, 1510.04290.

[60]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[61]  F. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. II. Mass Spectra, Stellar Evolution, and Lifetimes in the Galaxy , 1999, astro-ph/9912155.

[62]  Martin J. Rees,et al.  Tidal capture formation of binary systems and X-ray sources in globular clusters. , 1975 .

[63]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[64]  Zhanwen Han,et al.  Mass transfer from a giant star to a main-sequence companion and its contribution to long-orbital-period blue stragglers , 2008, 0804.2294.

[65]  M. Shara,et al.  On the origins of enigmatic stellar populations in Local Group galactic nuclei , 2016, 1608.02944.

[66]  F. A. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions , 2003, astro-ph/0301521.

[67]  S. Shapiro,et al.  Evolution of Stellar Collision Products in Globular Clusters. I. Head-on Collisions , 1997, astro-ph/9705019.

[68]  High-resolution simulations of stellar collisions between equal-mass main-sequence stars in globular clusters , 2001, astro-ph/0112284.

[69]  Z. Han,et al.  The blue stragglers formed via mass transfer in old open clusters , 2006, astro-ph/0604290.

[70]  S. Chatterjee,et al.  MONTE CARLO SIMULATIONS OF GLOBULAR CLUSTER EVOLUTION. V. BINARY STELLAR EVOLUTION , 2009, 0912.4682.

[71]  W. H. Press,et al.  On formation of close binaries by two-body tidal capture , 1977 .

[72]  B. Carney,et al.  Infrared Photometry of NGC 6791 , 2004, astro-ph/0411014.

[73]  R. Mathieu,et al.  On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity , 2017, 1703.10181.

[74]  Giampaolo Piotto,et al.  Relative Frequencies of Blue Stragglers in Galactic Globular Clusters: Constraints for the Formation Mechanisms , 2004, astro-ph/0402592.

[75]  A. Geller,et al.  The dynamical significance of triple star systems in star clusters , 2013, 1304.2775.

[76]  A. Sills,et al.  An Analytic Technique for Constraining the Dynamical Origins of Multiple Star Systems Containing Merger Products , 2010, 1009.0461.

[77]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[78]  S. Chatterjee,et al.  Understanding the dynamical state of globular clusters: core-collapsed versus non-core-collapsed , 2012, 1207.3063.

[79]  P. Leonard Stellar Collisions in Globular Clusters and the Blue Straggler Problem , 1989 .

[80]  C. Knigge,et al.  An analytic model for blue straggler formation in globular clusters , 2011, 1105.5388.

[81]  H. Baumgardt,et al.  A prescription and fast code for the long-term evolution of star clusters - III. Unequal masses and stellar evolution , 2014, 1405.1086.

[82]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way II. The catalogue of basic parameters , 2013, 1308.5822.

[83]  Jaymie M. Matthews,et al.  REVISED STELLAR PROPERTIES OF KEPLER TARGETS FOR THE QUARTER 1–16 TRANSIT DETECTION RUN , 2013, 1312.0662.

[84]  Robert D. Mathieu,et al.  A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions , 2011, Nature.

[85]  W. Harris A New Catalog of Globular Clusters in the Milky Way , 2010, 1012.3224.

[86]  A. Vanderburg,et al.  THE K2 M67 STUDY: AN EVOLVED BLUE STRAGGLER IN M67 FROM K2 MISSION ASTEROSEISMOLOGY , 2016, 1611.01158.

[87]  E. Bertin,et al.  The CFHT Open Star Cluster Survey. II. Deep CCD Photometry of the Old Open Star Cluster NGC 6819 , 2001, astro-ph/0104164.

[88]  V. Kozhurina-Platais,et al.  WIYN Open Cluster Study. II. UBVRI CCD Photometry of the Open Cluster NGC 188 , 1999 .