Rhythmic TMS over Parietal Cortex Links Distinct Brain Frequencies to Global versus Local Visual Processing

Summary Neural networks underlying visual perception exhibit oscillations at different frequencies (e.g., [1–6]). But how these map onto distinct aspects of visual perception remains elusive. Recent electroencephalography data indicate that theta or beta frequencies at parietal sensors increase in amplitude when conscious perception is dominated by global or local features, respectively, of a reversible visual stimulus [6]. But this provides only correlative, noninterventional evidence. Here we show via transcranial magnetic stimulation (TMS) interventions that short rhythmic bursts of right-parietal TMS at theta or beta frequency can causally benefit processing of global or local levels, respectively, for hierarchical visual stimuli, especially in the context of salient incongruent distractors. This double dissociation between theta and beta TMS reveals distinct causal roles for particular frequencies in processing global versus local visual features.

[1]  M. Gazzaniga,et al.  Representation of Visuotactile Space in the Split Brain , 2001, Psychological science.

[2]  S. Hevenor,et al.  The effect of variability of unattended information on global and local processing: evidence for lateralization at early stages of processing , 2000, Neuropsychologia.

[3]  C D Frith,et al.  Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. , 1997, Brain : a journal of neurology.

[4]  G. Thut,et al.  Mechanisms of selective inhibition in visual spatial attention are indexed by α‐band EEG synchronization , 2007, The European journal of neuroscience.

[5]  H. Heinze,et al.  Electrophysiological correlates of hierarchical stimulus processing: Dissociation between onset and later stages of global and local target processing , 1993, Neuropsychologia.

[6]  S. Kosslyn,et al.  The role of area 17 in visual imagery: convergent evidence from PET and rTMS. , 1999, Science.

[7]  C. Gerloff,et al.  Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency , 2003, The European journal of neuroscience.

[8]  James T. Townsend,et al.  The Stochastic Modeling of Elementary Psychological Processes , 1983 .

[9]  C. Miniussi,et al.  New insights into rhythmic brain activity from TMS–EEG studies , 2009, Trends in Cognitive Sciences.

[10]  Carmel Mevorach,et al.  Opposite biases in salience-based selection for the left and right posterior parietal cortex , 2006, Nature Neuroscience.

[11]  C. Spence,et al.  Tactile-Visual Links in Exogenous Spatial Attention under Different Postures: Convergent Evidence from Psychophysics and ERPs , 2001, Journal of Cognitive Neuroscience.

[12]  A. Karim,et al.  Brain Oscillatory Substrates of Visual Short-Term Memory Capacity , 2009, Current Biology.

[13]  Sönke Johannes,et al.  Hierarchical visual stimuli: electrophysiological evidence for separate left hemispheric global and local processing mechanisms in humans , 1996, Neuroscience Letters.

[14]  S. Hughes,et al.  Temporal Framing of Thalamic Relay-Mode Firing by Phasic Inhibition during the Alpha Rhythm , 2009, Neuron.

[15]  R. Knight,et al.  Component mechanisms underlying the processing of hierarchically organized patterns: inferences from patients with unilateral cortical lesions. , 1990, Journal of experimental psychology. Learning, memory, and cognition.

[16]  Richard S. J. Frackowiak,et al.  Where in the brain does visual attention select the forest and the trees? , 1996, Nature.

[17]  J. Schoffelen,et al.  Prestimulus Oscillatory Activity in the Alpha Band Predicts Visual Discrimination Ability , 2008, The Journal of Neuroscience.

[18]  L. Robertson,et al.  Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  R. S. J. Frackowiak,et al.  Hemispheric specialization for global and local processing: the effect of stimulus category , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[21]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[22]  A Zani,et al.  Electrophysiological evidence of a perceptual precedence of global vs. local visual information. , 1998, Brain research. Cognitive brain research.

[23]  Gregor Thut,et al.  Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability , 2008, Neuroreport.

[24]  Á. Pascual-Leone,et al.  Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression , 1996, The Lancet.

[25]  N. Kanwisher,et al.  The Generality of Parietal Involvement in Visual Attention , 1999, Neuron.

[26]  Antígona Martínez,et al.  Hemispneric asymmetries in global and local processing: evidence from fMRI , 1997, Neuroreport.

[27]  Carmel Mevorach,et al.  Driven to less distraction: rTMS of the right parietal cortex reduces attentional capture in visual search. , 2009, Cerebral cortex.

[28]  Philippe G Schyns,et al.  Perceptual moments of conscious visual experience inferred from oscillatory brain activity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Simon Hanslmayr,et al.  EEG alpha oscillations in the preparation for global and local processing predict behavioral performance , 2009, Human brain mapping.

[30]  David B. Boles,et al.  Hemispheric Differences in Global versus Local Processing: Still Unclear , 1996, Brain and Cognition.

[31]  J. Gross,et al.  On the Role of Prestimulus Alpha Rhythms over Occipito-Parietal Areas in Visual Input Regulation: Correlation or Causation? , 2010, The Journal of Neuroscience.

[32]  Á. Pascual-Leone,et al.  Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. , 2008, Cerebral cortex.