Alleviating the Jahn–Teller Distortion of P3-Type Manganese-Based Cathodes by Compositionally Graded Structure for Sodium-Ion Batteries

[1]  Xing Wu,et al.  Advanced Layered Oxide Cathodes for Sodium/Potassium-Ion Batteries: Development, Challenges and Prospects , 2022, Chemical Engineering Journal.

[2]  Sailong Xu,et al.  Ion Substitution Strategy of Manganese‐Based Layered Oxide Cathodes for Advanced and Low‐Cost Sodium Ion Batteries , 2022, Chemical record.

[3]  Hanseul Kim,et al.  Correlation between the Cation Disorders of Fe3+ and Li+ in P3-Type Na0.67[Li0.1(Fe0.5Mn0.5)0.9]O2 for Sodium Ion Batteries. , 2022, ACS applied materials & interfaces.

[4]  Cuiping Han,et al.  Ether-Water Hybrid Electrolyte Contributing to Excellent Mg Ion Storage in Layered Sodium Vanadate. , 2022, ACS nano.

[5]  Xijin Xu,et al.  Suppressing the P2 - O2 phase transformation and Na+/vacancy ordering of high-voltage manganese-based P2-type cathode by cationic codoping. , 2021, Journal of colloid and interface science.

[6]  Haitao Huang,et al.  Boosting the Redox Kinetics of High‐Voltage P2‐Type Cathode by Radially Oriented {010} Exposed Nanoplates for High‐Power Sodium‐Ion Batteries , 2021, Small Structures.

[7]  Zhizhen Zhang,et al.  Unlocking the potential of P3 structure for practical Sodium-ion batteries by fabricating zero strain framework for Na+ intercalation , 2021 .

[8]  Xiaobo Ji,et al.  Copper-substituted NaxMO2 (M = Fe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation , 2021 .

[9]  Shao‐hua Luo,et al.  High-Operating Voltage, Long-Life Layered Oxides for Sodium Ion Batteries Enabled by Cosubstitution of Titanium and Magnesium , 2021 .

[10]  Xiao Ji,et al.  Elucidation of the Jahn-Teller effect in a pair of sodium isomer , 2020 .

[11]  M. Winter,et al.  Stabilizing P3‐Type Oxides as Cathodes for High‐Rate and Long‐Life Sodium Ion Batteries by Disordered Distribution of Transition Metals , 2020 .

[12]  Chenghao Yang,et al.  Dual‐Strategy of Cation‐Doping and Nanoengineering Enables Fast and Stable Sodium‐Ion Storage in a Novel Fe/Mn‐Based Layered Oxide Cathode , 2020, Advanced science.

[13]  Pengxiao Sun,et al.  Moss-like nickel-cobalt phosphide nanostructures for highly flexible all-solid-state hybrid supercapacitors with excellent electrochemical performances , 2020 .

[14]  Haoshen Zhou,et al.  Elucidating Anionic Redox Chemistry in P3 Layered Cathode for Na-Ion Batteries. , 2020, ACS applied materials & interfaces.

[15]  M. Winter,et al.  Preferential occupation of Na in P3-type layered cathode material for sodium ion batteries , 2020 .

[16]  R. Younesi,et al.  Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide , 2020 .

[17]  B. Teng,et al.  Dual-functional NiCo2S4 polyhedral architecture with superior electrochemical performance for supercapacitors and lithium-ion batteries. , 2020, Science bulletin.

[18]  P. He,et al.  Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na0.66Li0.22Ti0.15Mn0.63O2 , 2019, ACS Energy Letters.

[19]  M. Winter,et al.  P3 Na0.9Ni0.5Mn0.5O2 Cathode Material for Sodium Ion Batteries , 2019, Chemistry of Materials.

[20]  Ya‐Xia Yin,et al.  Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery. , 2019, ACS applied materials & interfaces.

[21]  Xiao-dong Guo,et al.  Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries , 2019, Energy Storage Materials.

[22]  Sheng Xu,et al.  Improving the Electrochemical Properties of the Manganese-Based P3 Phase by Multiphasic Intergrowth. , 2018, Inorganic chemistry.

[23]  Seung‐Taek Myung,et al.  Unraveling the Role of Earth-Abundant Fe in the Suppression of Jahn-Teller Distortion of P'2-Type Na2/3MnO2: Experimental and Theoretical Studies. , 2018, ACS applied materials & interfaces.

[24]  T. Rojo,et al.  P2 manganese rich sodium layered oxides: Rational stoichiometries for enhanced performance , 2018, Journal of Power Sources.

[25]  T. Zhai,et al.  Multishell Precursors Facilitated Synthesis of Concentration-Gradient Nickel-Rich Cathodes for Long-Life and High-Rate Lithium-Ion Batteries. , 2018, ACS applied materials & interfaces.

[26]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[27]  Yu-Guo Guo,et al.  Layered Oxide Cathodes for Sodium‐Ion Batteries: Phase Transition, Air Stability, and Performance , 2018 .

[28]  Yong‐Sheng Hu,et al.  Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode , 2017 .

[29]  K. Kubota,et al.  P′2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between Orthorhombic Distortion and Electrochemical Property , 2017 .

[30]  S. Maddukuri,et al.  Synthesis and Electrochemical Study of New P3 Type Layered Na0.6Ni0.25Mn0.5Co0.25O2 for Sodium‐Ion Batteries , 2017 .

[31]  P. Bruce,et al.  High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x = 0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability , 2016 .

[32]  Ya‐Xia Yin,et al.  Suppressing the P2-O2 Phase Transition of Na0.67 Mn0.67 Ni0.33 O2 by Magnesium Substitution for Improved Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[33]  D. Nihtianova,et al.  P3-Type Layered Sodium-Deficient Nickel-Manganese Oxides: A Flexible Structural Matrix for Reversible Sodium and Lithium Intercalation. , 2015, ChemPlusChem.

[34]  Robert W. Black,et al.  Uptake of CO2 in Layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of Carbonate Anions , 2015 .

[35]  A. Tanaka,et al.  Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries , 2014 .

[36]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[37]  Jing Xu,et al.  Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges , 2013 .

[38]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[39]  J. Dahn,et al.  Coprecipitation Synthesis of Ni x Mn 1−x (OH) 2 Mixed Hydroxides † , 2010 .

[40]  Zhonghua Lu,et al.  In Situ X-Ray Diffraction Study of P 2 ­ Na2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 , 2001 .

[41]  R. D. Vengrenovitch On the ostwald ripening theory , 1982 .

[42]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .