On the Dimensionality of Face Space

The dimensionality of face space is measured objectively in a psychophysical study. Within this framework, we obtain a measurement of the dimension for the human visual system. Using an eigenface basis, evidence is presented that talented human observers are able to identify familiar faces that lie in a space of roughly 100 dimensions and the average observer requires a space of between 100 and 200 dimensions. This is below most current estimates. It is further argued that these estimates give an upper bound for face space dimension and this might be lowered by better constructed "eigenfaces" and by talented observers.

[1]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[2]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[3]  M. E. Cox Handbook of Optics , 1980 .

[4]  J. Tanaka The entry point of face recognition: evidence for face expertise. , 2001, Journal of experimental psychology. General.

[5]  W. Ehrenstein,et al.  Psychophysical Methods , 1999 .

[6]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[8]  Quick Rf A vector-magnitude model of contrast detection. , 1974 .

[9]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[10]  G. W. STEWARTt ON THE EARLY HISTORY OF THE SINGULAR VALUE DECOMPOSITION * , 2022 .

[11]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[12]  Chengjun Liu,et al.  Independent component analysis of Gabor features for face recognition , 2003, IEEE Trans. Neural Networks.

[13]  Alan L. Yuille,et al.  Statistical Edge Detection: Learning and Evaluating Edge Cues , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[15]  Alex Pentland,et al.  Beyond eigenfaces: probabilistic matching for face recognition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[16]  Stefaan Decoene Detection theory - a users guide - macmillan,na, creelman,cd , 1994 .

[17]  R. Quick A vector-magnitude model of contrast detection , 2004, Kybernetik.

[18]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  David G. Stork,et al.  Pattern Classification , 1973 .

[20]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[21]  Bernhard Schölkopf,et al.  Classification of Faces in Man and Machine , 2006, Neural Computation.

[22]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[23]  Alice J. O'Toole,et al.  Low-dimensional representation of faces in higher dimensions of the face space , 1993 .

[24]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[25]  Lawrence Sirovich,et al.  The global dimensionality of face space , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[26]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Eero P. Simoncelli Vision and the statistics of the visual environment , 2003, Current Opinion in Neurobiology.

[28]  Martial Hebert,et al.  Shape-based recognition of wiry objects , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[29]  Ron Kohavi,et al.  The Case against Accuracy Estimation for Comparing Induction Algorithms , 1998, ICML.

[30]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[31]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[32]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  A. O'Toole,et al.  The perception of face gender: The role of stimulus structure in recognition and classification , 1998, Memory & cognition.

[34]  G. W. Stewart,et al.  On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..

[35]  E. Fava Sensation & Perception , 2004, NeuroImage.

[36]  Marian Stewart Bartlett,et al.  Independent component representations for face recognition , 1998, Electronic Imaging.

[37]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[38]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[39]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[40]  V. Bruce,et al.  Face processing: Human perception and principal components analysis , 1996, Memory & cognition.

[41]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[42]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[43]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[44]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[45]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[47]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..