Enhancement of physical and reaction to fire properties of crude glycerol polyurethane foams filled with expanded graphite

[1]  A. Barros-Timmons,et al.  Effect of unrefined crude glycerol composition on the properties of polyurethane foams , 2017 .

[2]  Rui F. Silva,et al.  Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee grounds polyol , 2017 .

[3]  M. Modesti,et al.  Expandable graphite in polyurethane foams: The effect of expansion volume and intercalants on flame retardancy , 2017 .

[4]  L. Costa,et al.  Insights into the physical properties of biobased polyurethane/expanded graphite composite foams , 2017 .

[5]  Rui F. Silva,et al.  Statistical evaluation of the effect of formulation on the properties of crude glycerol polyurethane foams , 2016 .

[6]  A. Avots,et al.  Flammability of Bio-Based Rigid Polyurethane Foam as Sustainable Thermal Insulation Material , 2016 .

[7]  C. P. Neto,et al.  Spent coffee grounds as a renewable source for ecopolyols production , 2015 .

[8]  Rui F. Silva,et al.  Bio-based polyurethane foams toward applications beyond thermal insulation , 2015 .

[9]  M. Valentini,et al.  Electromagnetic properties and performance of exfoliated graphite (EG) – Thermoplastic polyurethane (TPU) nanocomposites at microwaves , 2015 .

[10]  Rui F. Silva,et al.  Rigid polyurethane foams derived from cork liquefied at atmospheric pressure , 2015 .

[11]  Yang Chen,et al.  Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water‐blown semi‐rigid polyurethane foam , 2014 .

[12]  C. P. Neto,et al.  Ecopolyol Production from Industrial Cork Powder via Acid Liquefaction Using Polyhydric Alcohols , 2014 .

[13]  Lijun Qian,et al.  Bi-phase flame-retardant effect of hexa-phenoxy-cyclotriphosphazene on rigid polyurethane foams containing expandable graphite , 2014 .

[14]  Xiaolan Luo,et al.  Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. , 2013, Bioresource technology.

[15]  J. Njuguna,et al.  Enhancement of thermal conductivity of materials using different forms of natural graphite , 2012 .

[16]  C. Macosko,et al.  Rigid polyurethane foams from a soybean oil-based Polyol , 2011 .

[17]  C. Macosko,et al.  Nanodispersions of carbon nanofiber for polyurethane foaming , 2010 .

[18]  Younhee Kim,et al.  Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers (II) , 2009 .

[19]  D. K. Chattopadhyay,et al.  Thermal stability and flame retardancy of polyurethanes , 2009 .

[20]  Q. Jia,et al.  Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. , 2009, ACS nano.

[21]  X. Ji,et al.  Synthesis and characterization of expandable graphite–poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams , 2009 .

[22]  J. Jarosiński,et al.  Combustion Phenomena : Selected Mechanisms of Flame Formation, Propagation and Extinction , 2009 .

[23]  M. Modesti,et al.  Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane nanocomposite foams , 2008 .

[24]  S. Das,et al.  Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments , 2008 .

[25]  Daehan Kim,et al.  Characterization of polyurethane foam prepared by using starch as polyol , 2007 .

[26]  W. Chow,et al.  Studies on the Thermal Behavior of Polyurethanes , 2006 .

[27]  M. Modesti,et al.  Improvement on fire behaviour of water blown PIR–PUR foams: use of an halogen-free flame retardant , 2003 .

[28]  J. Andresen,et al.  Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents , 2002 .

[29]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[30]  Rudolph Maximilian Eugen Diamant,et al.  Thermal and Acoustic Insulation , 1986 .

[31]  P. Kahol,et al.  Biobased Polyols Using Thiol-Ene Chemistry for Rigid Polyurethane Foams with Enhanced Flame-Retardant Properties , 2017 .

[32]  A. Hejna,et al.  The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams , 2017 .

[33]  Yulong Ding,et al.  PCMs heat transfer performance enhancement with expanded graphite and its thermal stability , 2015 .

[34]  M. Modesti,et al.  Halogen-free flame retardants for polymeric foams , 2002 .

[35]  M. Modesti,et al.  Influence of different flame retardants on fire behaviour of modified PIR/PUR polymers , 2001 .

[36]  Robert C. Weast,et al.  Handbook of chemistry and physics : a readyreference book of chemical and physical data , 1972 .